In this paper we propose a pedestrian detection algorithm and its implementation on a Xilinx Virtex-4 FPGA. The algorithm is a sliding window-based classifier, that exploits a recently designed descriptor, the covariance of features, for characterizing pedestrians in a robust way. In the paper we show how such descriptor, originally suited for maximizing accuracy performances without caring about timings, can be quickly computed in an elegant, parallel way on the FPGA board. A grid of overlapped covariances extracts information from the sliding window, and feeds a linear Support Vector Machine that performs the detection. Experiments are performed on the INRIA pedestrian benchmark; the performances of the FPGA-based detector are discussed in terms of required computational effort and accuracy, showing state-of-the-art detection performances under excellent timings and economic memory usage.

FPGA-Based Pedestrian Detection Using Array of Covariance Features

MARTELLI, Samuele;TOSATO, Diego;CRISTANI, Marco;MURINO, Vittorio
2011-01-01

Abstract

In this paper we propose a pedestrian detection algorithm and its implementation on a Xilinx Virtex-4 FPGA. The algorithm is a sliding window-based classifier, that exploits a recently designed descriptor, the covariance of features, for characterizing pedestrians in a robust way. In the paper we show how such descriptor, originally suited for maximizing accuracy performances without caring about timings, can be quickly computed in an elegant, parallel way on the FPGA board. A grid of overlapped covariances extracts information from the sliding window, and feeds a linear Support Vector Machine that performs the detection. Experiments are performed on the INRIA pedestrian benchmark; the performances of the FPGA-based detector are discussed in terms of required computational effort and accuracy, showing state-of-the-art detection performances under excellent timings and economic memory usage.
2011
9781457717086
FPGA; pedestrian detection; covariance; SVM; embedded systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/366796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact