In this paper, a novel approach for contour based 2D shape recognition is proposed, using a class of information theoretic kernels recently introduced. This kind of kernels, based on a non-extensive generalization of the classical Shannon information theory, are defined on probability measures. In the proposed approach, chain code representations are first extracted from the contours; then n-gram statistics are computed and used as input to the information theoretic kernels. We tested different versions of such kernels, using support vector machine and nearest neighbor classifiers. An experimental evaluation on the Chicken pieces dataset shows that the proposed approach significantly outperforms the current state-of-the-art methods.
2D shape recognition using information theoretic kernels
BICEGO, Manuele;MURINO, Vittorio;
2010-01-01
Abstract
In this paper, a novel approach for contour based 2D shape recognition is proposed, using a class of information theoretic kernels recently introduced. This kind of kernels, based on a non-extensive generalization of the classical Shannon information theory, are defined on probability measures. In the proposed approach, chain code representations are first extracted from the contours; then n-gram statistics are computed and used as input to the information theoretic kernels. We tested different versions of such kernels, using support vector machine and nearest neighbor classifiers. An experimental evaluation on the Chicken pieces dataset shows that the proposed approach significantly outperforms the current state-of-the-art methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.