In this paper, we present an appearance-based method for person re-identification. It consists in the extraction of features that model three complementary aspects of the human appearance: the overall chromatic content, the spatial arrangement of colors into stable regions, and the presence of recurrent local motifs with high entropy. All this information is derived from different body parts, and weighted opportunely by exploiting symmetry and asymmetry perceptual principles. In this way, robustness against very low resolution, occlusions and pose, viewpoint and illumination changes is achieved. The approach applies to situations where the number of candidates varies continuously, considering single images or bunch of frames for each individual. It has been tested on several public benchmark datasets (ViPER, iLIDS, ETHZ), gaining new state-of-the-art performances.

Person re-identification by symmetry-driven accumulation of local features

FARENZENA, Michela;BAZZANI, Loris;PERINA, Alessandro;MURINO, Vittorio;CRISTANI, Marco
2010-01-01

Abstract

In this paper, we present an appearance-based method for person re-identification. It consists in the extraction of features that model three complementary aspects of the human appearance: the overall chromatic content, the spatial arrangement of colors into stable regions, and the presence of recurrent local motifs with high entropy. All this information is derived from different body parts, and weighted opportunely by exploiting symmetry and asymmetry perceptual principles. In this way, robustness against very low resolution, occlusions and pose, viewpoint and illumination changes is achieved. The approach applies to situations where the number of candidates varies continuously, considering single images or bunch of frames for each individual. It has been tested on several public benchmark datasets (ViPER, iLIDS, ETHZ), gaining new state-of-the-art performances.
2010
9781424469840
Video surveillance; re-identification; statistical modelling
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/342873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1455
  • ???jsp.display-item.citation.isi??? 1036
social impact