In this study, we evaluated the potentialities of ATR-FTIR microspectroscopy coupled to PCA in monitoring the major biochemical changes that occur during the autolysis of yeasts used for sparkling wine production. For this purpose, mid-infrared measurements were made on cells of the model strain Saccharomyces cerevisiae EC1118 in the course of autolysis induced at 30 C for five days in a model and in a base wine. By relating principal component loadings to the corresponding absorption bands, it was shown that they well describe compositional modifications induced by autolytic process on yeast cells, such as partial hydrolysis of proteins, increase of peptides, free nucleotides, lipids, mannans, and β-1,3 glucans. The corresponding score-score plots allowed us to monitor the different kinetics and to distinguish among faster, intermediate, and slower processes. ATR-FTIR microspectroscopy coupled with PCA is proposed as a sensitive method that can provide useful information to select efficient yeast strains, capable of accelerated autolysis, to be used in the second fermentation and aging of sparkling wines.

Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine

MONTI, Francesca;ROSSI, Franca;TORRIANI, Sandra
2010-01-01

Abstract

In this study, we evaluated the potentialities of ATR-FTIR microspectroscopy coupled to PCA in monitoring the major biochemical changes that occur during the autolysis of yeasts used for sparkling wine production. For this purpose, mid-infrared measurements were made on cells of the model strain Saccharomyces cerevisiae EC1118 in the course of autolysis induced at 30 C for five days in a model and in a base wine. By relating principal component loadings to the corresponding absorption bands, it was shown that they well describe compositional modifications induced by autolytic process on yeast cells, such as partial hydrolysis of proteins, increase of peptides, free nucleotides, lipids, mannans, and β-1,3 glucans. The corresponding score-score plots allowed us to monitor the different kinetics and to distinguish among faster, intermediate, and slower processes. ATR-FTIR microspectroscopy coupled with PCA is proposed as a sensitive method that can provide useful information to select efficient yeast strains, capable of accelerated autolysis, to be used in the second fermentation and aging of sparkling wines.
2010
ATR-FTIR microspectroscopy; autolysis; S. cerevisiae
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/342104
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 56
social impact