Streptococcus thermophilus is a lactic acid bacteria (LAB) widely used in milk fermentation processes as a starter culture. In this work the genetic diversity of S. thermophilus isolates from different sources was analyzed using Amplified Fragment Length Polymorphism fingerprinting (AFLP). Since this is the first report that indicates the application of AFLP in order to study genotypic polymorphism in S. thermophilus species, an optimization of experimental conditions was carried out to decide the optimal AFLP analysis protocol. Furthermore the fingerprinting resolutions of AFLP and RAPD (Random Amplified Polymorphic DNA) were evaluated and compared. The overall data suggest that genotypic characterization performed by AFLP provide a better view of microbial diversity of S. thermophilus, indicating that RAPD is less discriminating than AFLP. The successful use of AFLP analysis in the characterization of S. thermophilus strains reported in this study suggests the potential uses for this technique to define the whole-genome diversity of each specific strain, as an alternative to the fingerprinting methods used till now.

Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus.

LA GIOIA, Federica;TORRIANI, Sandra;
2009-01-01

Abstract

Streptococcus thermophilus is a lactic acid bacteria (LAB) widely used in milk fermentation processes as a starter culture. In this work the genetic diversity of S. thermophilus isolates from different sources was analyzed using Amplified Fragment Length Polymorphism fingerprinting (AFLP). Since this is the first report that indicates the application of AFLP in order to study genotypic polymorphism in S. thermophilus species, an optimization of experimental conditions was carried out to decide the optimal AFLP analysis protocol. Furthermore the fingerprinting resolutions of AFLP and RAPD (Random Amplified Polymorphic DNA) were evaluated and compared. The overall data suggest that genotypic characterization performed by AFLP provide a better view of microbial diversity of S. thermophilus, indicating that RAPD is less discriminating than AFLP. The successful use of AFLP analysis in the characterization of S. thermophilus strains reported in this study suggests the potential uses for this technique to define the whole-genome diversity of each specific strain, as an alternative to the fingerprinting methods used till now.
2009
Streptococcus thermophilus; AFLP (Amplified Fragment Length Polymorphism); Genotyping; PCR-fingerprinting; Biodiversity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/333746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact