Interactive simulations of deformable bodies are a growing research area with possible applications in several fields, i.e. computer aided surgery. The main implementation issue is to mimic the real behavior of the body at the extremely high rates required by haptic devices. Since even high-end computers have inadequate performance, one possible solution is to exploit the parallelism of modern Graphics Processing Units. In this paper we present our research aiming at moving the whole computational process from the CPU to the GPU taking advantage of the computational power of the graphics hardware. We use a mass-spring model, augmented with local damping coefficients and volume preservation forces. Collision detection is performed against external rigid bodies with high complexity mesh, such as the skeleton’s one. The user interacts with the model by controlling virtual tools, i.e. probes or tweezers. Haptic forces are computed on GPU and the results are asyncronously transferred to the CPU. Our approach can simulate the deformation of complex models with gravity and interaction with environment and tools at a frame rate higher than 1 KHz, making it suitable for visual rendering and haptic feedback.

Simulation of Deformable Environment with Haptic Feedback on GPU

ALTOMONTE, Marco;ZERBATO, Davide;BOTTURI, Debora;FIORINI, Paolo
2008-01-01

Abstract

Interactive simulations of deformable bodies are a growing research area with possible applications in several fields, i.e. computer aided surgery. The main implementation issue is to mimic the real behavior of the body at the extremely high rates required by haptic devices. Since even high-end computers have inadequate performance, one possible solution is to exploit the parallelism of modern Graphics Processing Units. In this paper we present our research aiming at moving the whole computational process from the CPU to the GPU taking advantage of the computational power of the graphics hardware. We use a mass-spring model, augmented with local damping coefficients and volume preservation forces. Collision detection is performed against external rigid bodies with high complexity mesh, such as the skeleton’s one. The user interacts with the model by controlling virtual tools, i.e. probes or tweezers. Haptic forces are computed on GPU and the results are asyncronously transferred to the CPU. Our approach can simulate the deformation of complex models with gravity and interaction with environment and tools at a frame rate higher than 1 KHz, making it suitable for visual rendering and haptic feedback.
2008
haptics; robotics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/326881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact