In this paper, a novel unsupervised approach for the segmentation of unorganized 3D points sets is proposed. The method derives by the mean shift clustering paradigm devoted to separate the modes of a multimodal density by using a kernel-based technique. Here, the attention is focused on the selection of the kernel bandwidth which typically strongly affects the level of accuracy of the segmentation results. In particular, a set of geometric features is computed from each 3D point of the given data. This set is projected onto a number of independent sub-spaces, each one associated to a different estimated feature, and overall forming a joint multidimensional (feature) space. In this space, we propose a method for selecting the best multidimensional kernel bandwidth in an automatic fashion, based on stability criteria. The final kernel considers each sub-space in an adaptive way in relation to the discrimination power of each feature, leading to accurate results when dealing with different types of 3D data.

Adaptive Feature Integration for Segmentation of 3D Data by Unsupervised Density Estimation

CRISTANI, Marco;CASTELLANI, Umberto;MURINO, Vittorio
2006-01-01

Abstract

In this paper, a novel unsupervised approach for the segmentation of unorganized 3D points sets is proposed. The method derives by the mean shift clustering paradigm devoted to separate the modes of a multimodal density by using a kernel-based technique. Here, the attention is focused on the selection of the kernel bandwidth which typically strongly affects the level of accuracy of the segmentation results. In particular, a set of geometric features is computed from each 3D point of the given data. This set is projected onto a number of independent sub-spaces, each one associated to a different estimated feature, and overall forming a joint multidimensional (feature) space. In this space, we propose a method for selecting the best multidimensional kernel bandwidth in an automatic fashion, based on stability criteria. The final kernel considers each sub-space in an adaptive way in relation to the discrimination power of each feature, leading to accurate results when dealing with different types of 3D data.
2006
0769525210
Model selection; Clustering; Mean-shift
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/313204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact