We give a simple, geometric and explicit construction of bivariate interpolation at certain points in a square (called Padua points), giving compact formulas for their fundamental Lagrange polynomials. We show that the associated norms of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of O ((log n)2). To the best of our knowledge this is the first complete, explicit example of near optimal bivariate interpolation points.
Bivariate Lagrange interpolation at the Padua points: the generating curve approach
BOS L.;CALIARI, Marco;
2006-01-01
Abstract
We give a simple, geometric and explicit construction of bivariate interpolation at certain points in a square (called Padua points), giving compact formulas for their fundamental Lagrange polynomials. We show that the associated norms of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of O ((log n)2). To the best of our knowledge this is the first complete, explicit example of near optimal bivariate interpolation points.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
preBCDMVX06.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
137.2 kB
Formato
Adobe PDF
|
137.2 kB | Adobe PDF | Visualizza/Apri |
BCDMVX06.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
167.88 kB
Formato
Adobe PDF
|
167.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.