We give a simple, geometric and explicit construction of bivariate interpolation at certain points in a square (called Padua points), giving compact formulas for their fundamental Lagrange polynomials. We show that the associated norms of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of O ((log n)2). To the best of our knowledge this is the first complete, explicit example of near optimal bivariate interpolation points.

Bivariate Lagrange interpolation at the Padua points: the generating curve approach

BOS L.;CALIARI, Marco;
2006-01-01

Abstract

We give a simple, geometric and explicit construction of bivariate interpolation at certain points in a square (called Padua points), giving compact formulas for their fundamental Lagrange polynomials. We show that the associated norms of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of O ((log n)2). To the best of our knowledge this is the first complete, explicit example of near optimal bivariate interpolation points.
Bivariate polynomial interpolation, Padua points, Lebesgue constant, explicit construction
File in questo prodotto:
File Dimensione Formato  
preBCDMVX06.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 137.2 kB
Formato Adobe PDF
137.2 kB Adobe PDF Visualizza/Apri
BCDMVX06.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 167.88 kB
Formato Adobe PDF
167.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/312256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 84
social impact