The objective of this tutorial is to train students and researchers in the various domains involving the modelling and simulation of the human body for medical purposes. Human body representations have been used for centuries to help in understanding and documenting the shape and function of its compounding parts. Since the Da Vinci drawings, human body atlases have evolved a lot, and can nowadays describe the human anatomy with great precision. How the body works: its systems and their functions, the mechanics of human motion, the pathological and healing processes, growing and ageing are some among the many topics being studied and described for years in different domains of science, from the medical field to computer graphics. Nowadays, medical acquisition devices especially medical scanners are able to produce a large amount of information, such as high-resolution volumes, temporal sequences or functional images, more-and-more difficult to analyse and visualise. In other words, we measure much more than we understand. In this context, higher-level information such as anatomical and functional models is increasingly required to support diagnosis and treatment. Three levels of complexity can be distinguished (geometry, function and control) where modelling and simulation methods take place. In this tutorial we will present the current research issues towards the precise (patient-specific) reconstruction of virtual models and their functional simulation. We will focus on the computer graphics aspects involved in medical modelling/ simulation: deformable model-based segmentation, mesh optimisation, data fusion, interactive mechanical simulation, cost-efficient visualisation, etc. Examples will be given in the musculoskeletal, cardiac and neurological domains.

Towards the Virtual Physiological Human, Eurographics Tutorial 3

GIACHETTI, Andrea;
2007-01-01

Abstract

The objective of this tutorial is to train students and researchers in the various domains involving the modelling and simulation of the human body for medical purposes. Human body representations have been used for centuries to help in understanding and documenting the shape and function of its compounding parts. Since the Da Vinci drawings, human body atlases have evolved a lot, and can nowadays describe the human anatomy with great precision. How the body works: its systems and their functions, the mechanics of human motion, the pathological and healing processes, growing and ageing are some among the many topics being studied and described for years in different domains of science, from the medical field to computer graphics. Nowadays, medical acquisition devices especially medical scanners are able to produce a large amount of information, such as high-resolution volumes, temporal sequences or functional images, more-and-more difficult to analyse and visualise. In other words, we measure much more than we understand. In this context, higher-level information such as anatomical and functional models is increasingly required to support diagnosis and treatment. Three levels of complexity can be distinguished (geometry, function and control) where modelling and simulation methods take place. In this tutorial we will present the current research issues towards the precise (patient-specific) reconstruction of virtual models and their functional simulation. We will focus on the computer graphics aspects involved in medical modelling/ simulation: deformable model-based segmentation, mesh optimisation, data fusion, interactive mechanical simulation, cost-efficient visualisation, etc. Examples will be given in the musculoskeletal, cardiac and neurological domains.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/310877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact