Bifidobacteria represent one of the most numerous groups of bacteria found in the gastrointestinal tract of humans and animals. In man, gastrointestinal bifidobacteria are associated with health effects and for this reason they are often used as functional ingredients in food and pharmaceutical products. Such applications may benefit from or require a clear and reliable bifidobacterial species identification. The increasing number of available bacterial genome sequences has provided a large amount of housekeeping gene sequences that can be used both for identification of bifidobacterial species as well as for understanding bifidobacterial evolution. In order to assess their relative positions in the evolutionary process, fragments from seven conserved genes, clpC, dnaB, dnaG, dnaJ1, purF, rpoC and xfp, were sequenced from each of the currently described type strains of the genus Bifidobacterium. The results demonstrate that the concatenation of these seven gene sequences for phylogenetic purposes allows a significant increase in the discriminatory power between taxa
Analysis of bifidobacterial evolution using a multilocus approach
DELLAGLIO, Franco;
2006-01-01
Abstract
Bifidobacteria represent one of the most numerous groups of bacteria found in the gastrointestinal tract of humans and animals. In man, gastrointestinal bifidobacteria are associated with health effects and for this reason they are often used as functional ingredients in food and pharmaceutical products. Such applications may benefit from or require a clear and reliable bifidobacterial species identification. The increasing number of available bacterial genome sequences has provided a large amount of housekeeping gene sequences that can be used both for identification of bifidobacterial species as well as for understanding bifidobacterial evolution. In order to assess their relative positions in the evolutionary process, fragments from seven conserved genes, clpC, dnaB, dnaG, dnaJ1, purF, rpoC and xfp, were sequenced from each of the currently described type strains of the genus Bifidobacterium. The results demonstrate that the concatenation of these seven gene sequences for phylogenetic purposes allows a significant increase in the discriminatory power between taxaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.