We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: since we can take multiple-valued logics as meaning not only finitely or infinitely many-valued logics but also power-set logics, our framework allows us to present also logics such as modal, intuitionistic and relevance logics, thus providing a first step towards fibring these logics with many-valued ones.
Labelled Deduction over Algebras of Truth-Values
VIGANO', Luca
2002-01-01
Abstract
We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: since we can take multiple-valued logics as meaning not only finitely or infinitely many-valued logics but also power-set logics, our framework allows us to present also logics such as modal, intuitionistic and relevance logics, thus providing a first step towards fibring these logics with many-valued ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.