When a plane undergoes a deformation that can be represented by a planar linear vector field, the projected vector field on the image plane of an optical device is at most quadratic. This 2D motion field has one singular point, with eigenvalues identical to those of the singular point describing the deformation. As a consequence, the nature of the singular point of the deformation is a projective invariant. When the plane moves and experiences a linear deformation at the same time, the associated 2D motion field is still quadratic with at most 3 singular points. In the case of a normal rototranslation, i.e. when the angular velocity is normal to the plane, and of a linear deformation, the 2D motion field has at most one singular point and substantial information on the rigid motion and on the deformation can be recovered from it. Experiments with simulated deformations and real deformable objects show that the proposed analysis can provide accurate results and information on more general 3D deformations.
``Optical flow and deformable objects''.
GIACHETTI, Andrea;
1995-01-01
Abstract
When a plane undergoes a deformation that can be represented by a planar linear vector field, the projected vector field on the image plane of an optical device is at most quadratic. This 2D motion field has one singular point, with eigenvalues identical to those of the singular point describing the deformation. As a consequence, the nature of the singular point of the deformation is a projective invariant. When the plane moves and experiences a linear deformation at the same time, the associated 2D motion field is still quadratic with at most 3 singular points. In the case of a normal rototranslation, i.e. when the angular velocity is normal to the plane, and of a linear deformation, the 2D motion field has at most one singular point and substantial information on the rigid motion and on the deformation can be recovered from it. Experiments with simulated deformations and real deformable objects show that the proposed analysis can provide accurate results and information on more general 3D deformations.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											10.1.1.38.7479.pdf
										
																				
									
										
											 solo utenti autorizzati 
											Tipologia:
											Documento in Pre-print
										 
									
									
									
									
										
											Licenza:
											
											
												Accesso ristretto
												
												
												
											
										 
									
									
										Dimensione
										311.61 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								311.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



