Bone dissection is an important component of many surgical procedures. In this paper we discuss adaptive techniques for providing real-time haptic and visual feedback during a virtual bone dissection simulation. The simulator is being developed as a component of a training system for temporal bone surgery. We harness the difference in complexity and frequency requirements of the visual and haptic simulations by modeling the system as a collection of loosely coupled concurrent components. The haptic component exploits a multi-resolution representation of the first two moments of the bone characteristic function to rapidly compute contact forces and determine bone erosion. The visual component uses a time-critical particle system evolution method to simulate secondary visual effects, such as bone debris accumulation, blooding, irrigation, and suction.
Titolo: | Adaptive techniques for real-time haptic and visual simulation of bone dissection |
Autori: | |
Data di pubblicazione: | 2003 |
Abstract: | Bone dissection is an important component of many surgical procedures. In this paper we discuss adaptive techniques for providing real-time haptic and visual feedback during a virtual bone dissection simulation. The simulator is being developed as a component of a training system for temporal bone surgery. We harness the difference in complexity and frequency requirements of the visual and haptic simulations by modeling the system as a collection of loosely coupled concurrent components. The haptic component exploits a multi-resolution representation of the first two moments of the bone characteristic function to rapidly compute contact forces and determine bone erosion. The visual component uses a time-critical particle system evolution method to simulate secondary visual effects, such as bone debris accumulation, blooding, irrigation, and suction. |
Handle: | http://hdl.handle.net/11562/242355 |
ISBN: | 9780769518824 |
Appare nelle tipologie: | 04.01 Contributo in atti di convegno |