In this paper, a novel general purpose clustering algorithm is presented, based on the watershed algorithm. The proposed approach defines a density function on a suitable lattice, whose cell dimension is carefully estimated from the data. The clustering is then performed using the well-known watershed algorithm, paying particular attention to the boundary situations. The main characteristic of this method is the capability to determine automatically the number of clusters from the data, resulting in a completely unsupervised approach. Experimental evaluation on synthetic data shows that the proposed approach is able to accurately estimate the number of the classes and to cluster data effectively.

Watershed-based unsupervised clustering

BICEGO, Manuele;CRISTANI, Marco;FUSIELLO, Andrea;MURINO, Vittorio
2003

Abstract

In this paper, a novel general purpose clustering algorithm is presented, based on the watershed algorithm. The proposed approach defines a density function on a suitable lattice, whose cell dimension is carefully estimated from the data. The clustering is then performed using the well-known watershed algorithm, paying particular attention to the boundary situations. The main characteristic of this method is the capability to determine automatically the number of clusters from the data, resulting in a completely unsupervised approach. Experimental evaluation on synthetic data shows that the proposed approach is able to accurately estimate the number of the classes and to cluster data effectively.
3540404988
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11562/17943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact