We investigate the lattice of torsion pairs in the category of modules over an Artinian ring via the corresponding HRS-tilted t-structures. Through this lens, we give a unified account of two known results about the Hasse diagram of the lattice: that the edges of the diagram have a canonical labelling by bricks [Barnard, Carroll, and Zhu (2019); Demonet, Iyama, Reading, Reiten, and Thomas (2023)] and that the edges correspond to irreducible mutations of maximal rigid sets in the derived category [Angeleri Hügel, Laking, Šťovíček, and Vitória (2022)].

Bricks and mutation

Rosanna Laking
2025-01-01

Abstract

We investigate the lattice of torsion pairs in the category of modules over an Artinian ring via the corresponding HRS-tilted t-structures. Through this lens, we give a unified account of two known results about the Hasse diagram of the lattice: that the edges of the diagram have a canonical labelling by bricks [Barnard, Carroll, and Zhu (2019); Demonet, Iyama, Reading, Reiten, and Thomas (2023)] and that the edges correspond to irreducible mutations of maximal rigid sets in the derived category [Angeleri Hügel, Laking, Šťovíček, and Vitória (2022)].
2025
978-3-98547-083-9
Artinian ring
torsion pair
brick
mutation
cosilting
File in questo prodotto:
File Dimensione Formato  
EMS_press_preprint_version.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 418.1 kB
Formato Adobe PDF
418.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1174169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact