Large Language Models (LLMs) have demonstrated remarkable performance across diverse natural language processing tasks, yet their ability to memorize structured knowledge remains underexplored. In this paper, we investigate the extent to which general-purpose pre-trained LLMs retain and correctly reproduce concept identifier (ID)–label associations from publicly available ontologies. We conduct a systematic evaluation across multiple ontological resources, including the Gene Ontology, Uberon, Wikidata, and ICD-10, using LLMs such as Pythia-12B, Gemini-1.5-Flash, GPT-3.5, and GPT-4. Our findings reveal that only a small fraction of ontological concepts is accurately memorized, with GPT-4 demonstrating the highest performance. To understand why certain concepts are memorized more effectively than others, we analyze the relationship between memorization accuracy and concept popularity on the Web. Our results indicate a strong correlation between the frequency of a concept’s occurrence online and the likelihood of accurately retrieving its ID from the label. This suggests that LLMs primarily acquire such knowledge through indirect textual exposure rather than directly from structured ontological resources. Furthermore, we introduce new metrics to quantify prediction invariance, demonstrating that the stability of model responses across variations in prompt language and temperature settings can serve as a proxy for estimating memorization robustness.

Do LLMs Dream of Ontologies?

Bombieri, Marco
;
Fiorini, Paolo;Rospocher, Marco
2025-01-01

Abstract

Large Language Models (LLMs) have demonstrated remarkable performance across diverse natural language processing tasks, yet their ability to memorize structured knowledge remains underexplored. In this paper, we investigate the extent to which general-purpose pre-trained LLMs retain and correctly reproduce concept identifier (ID)–label associations from publicly available ontologies. We conduct a systematic evaluation across multiple ontological resources, including the Gene Ontology, Uberon, Wikidata, and ICD-10, using LLMs such as Pythia-12B, Gemini-1.5-Flash, GPT-3.5, and GPT-4. Our findings reveal that only a small fraction of ontological concepts is accurately memorized, with GPT-4 demonstrating the highest performance. To understand why certain concepts are memorized more effectively than others, we analyze the relationship between memorization accuracy and concept popularity on the Web. Our results indicate a strong correlation between the frequency of a concept’s occurrence online and the likelihood of accurately retrieving its ID from the label. This suggests that LLMs primarily acquire such knowledge through indirect textual exposure rather than directly from structured ontological resources. Furthermore, we introduce new metrics to quantify prediction invariance, demonstrating that the stability of model responses across variations in prompt language and temperature settings can serve as a proxy for estimating memorization robustness.
2025
Generative Artificial Intelligence, Large Language Models, Ontology, Memorization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1158628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact