Cystic fibrosis (CF) is a life-shortening autosomal recessive disease, caused by loss-of-function mutations that affect the CF transmembrane conductance regulator (CFTR) anion channel. G542X is the second-most common CF-causing variant, and it does not respond to current CFTR modulator drugs. Our study explores the use of adenine base editing to edit G542X to a non-CF-causing variant, G542R, and recover CFTR function. Using base editor engineered virus-like particles (BE-eVLPs) in patient-derived intestinal organoids, we achieved 2% G542X-to-G542R editing efficiency and restored CFTR-mediated chloride transport to 6.4% of wild-type levels, independent of modulator treatment, and with no bystander edits. This proof-of-principle study demonstrates the potential of base editing to rescue G542X and provides a foundation for future in-vivo applications.
Adenine base editing with engineered virus-like particles rescues the CFTR mutation G542X in patient-derived intestinal organoids
Latorre, Roberta V.Investigation
;Melotti, PaolaMembro del Collaboration Group
;Sorio, ClaudioWriting – Review & Editing
;
2025-01-01
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease, caused by loss-of-function mutations that affect the CF transmembrane conductance regulator (CFTR) anion channel. G542X is the second-most common CF-causing variant, and it does not respond to current CFTR modulator drugs. Our study explores the use of adenine base editing to edit G542X to a non-CF-causing variant, G542R, and recover CFTR function. Using base editor engineered virus-like particles (BE-eVLPs) in patient-derived intestinal organoids, we achieved 2% G542X-to-G542R editing efficiency and restored CFTR-mediated chloride transport to 6.4% of wild-type levels, independent of modulator treatment, and with no bystander edits. This proof-of-principle study demonstrates the potential of base editing to rescue G542X and provides a foundation for future in-vivo applications.File | Dimensione | Formato | |
---|---|---|---|
Nicosia et al iScience.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
4.11 MB
Formato
Adobe PDF
|
4.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.