: Adjuvant immunotherapy has been recently recommended for patients with metastatic ccRCC, but there are no tissue biomarkers to predict treatment response in ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas metastases remain understudied. To explore potential differences between genomic alterations and immune phenotypes in primary tumors and their matched metastases, we analyzed primary tumors (PTs) of 47 ccRCC patients and their matched distant metastases (METs) by comprehensive targeted parallel sequencing, whole-genome copy number variation (CNV) analysis, determination of microsatellite instability (MSI) and tumor mutational burden (TMB). We quantified the spatial distribution of tumor-infiltrating CD8+ T cells, and co-expression of the T-cell-exhaustion marker TOX by digital immunoprofiling and quantified tertiary lymphoid structures (TLS). Most METs were pathologically "cold". Inflamed, pathologically "hot" PTs were associated with a decreased disease-free survival (DFS), worst for patients with high levels of CD8+TOX+ T cells. Interestingly, inflamed METs showed a relative increase of exhausted CD8+TOX+ T cells and increased accumulative size of TLS compared to PTs. Integrative analysis of molecular and immune phenotypes revealed BAP1 and CDKN2A/B deficiency to be associated with an inflamed immune phenotype. Our results highlight the distinct spatial distribution and differentiation of CD8+ T cells at metastatic sites, and the association of an inflamed microenvironment with specific genomic alterations.

Immune phenotype-genotype associations in primary clear cell renal cell carcinoma and matched metastatic tissue

Brunelli, Matteo;
In corso di stampa

Abstract

: Adjuvant immunotherapy has been recently recommended for patients with metastatic ccRCC, but there are no tissue biomarkers to predict treatment response in ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas metastases remain understudied. To explore potential differences between genomic alterations and immune phenotypes in primary tumors and their matched metastases, we analyzed primary tumors (PTs) of 47 ccRCC patients and their matched distant metastases (METs) by comprehensive targeted parallel sequencing, whole-genome copy number variation (CNV) analysis, determination of microsatellite instability (MSI) and tumor mutational burden (TMB). We quantified the spatial distribution of tumor-infiltrating CD8+ T cells, and co-expression of the T-cell-exhaustion marker TOX by digital immunoprofiling and quantified tertiary lymphoid structures (TLS). Most METs were pathologically "cold". Inflamed, pathologically "hot" PTs were associated with a decreased disease-free survival (DFS), worst for patients with high levels of CD8+TOX+ T cells. Interestingly, inflamed METs showed a relative increase of exhausted CD8+TOX+ T cells and increased accumulative size of TLS compared to PTs. Integrative analysis of molecular and immune phenotypes revealed BAP1 and CDKN2A/B deficiency to be associated with an inflamed immune phenotype. Our results highlight the distinct spatial distribution and differentiation of CD8+ T cells at metastatic sites, and the association of an inflamed microenvironment with specific genomic alterations.
In corso di stampa
CD8+ T cells; ccRCC; genotype; immune phenotype; metastasis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1130606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact