We propose a novel image dataset focused on tiny faces wearing face masks for mask classification purposes, dubbed Small Face MASK (SF-MASK), composed of a collection made from 20k low-resolution images exported from diverse and heterogeneous datasets, ranging from 7× 7 to 64× 64 pixel resolution. An accurate visualization of this collection, through counting grids, made it possible to highlight gaps in the variety of poses assumed by the heads of the pedestrians. In particular, faces filmed by very high cameras, in which the facial features appear strongly skewed, are absent. To address this structural deficiency, we produced a set of synthetic images which resulted in a satisfactory covering of the intra-class variance. Furthermore, a small subsample of 1701 images contains badly worn face masks, opening to multi-class classification challenges. Experiments on SF-MASK focus on face mask classification using several classifiers. Results show that the richness of SF-MASK (real + synthetic images) leads all of the tested classifiers to perform better than exploiting comparative face mask datasets, on a fixed 1077 images testing set. Dataset and evaluation code are publicly available here: https://github.com/HumaticsLAB/sf-mask.

A Masked Face Classification Benchmark on Low-Resolution Surveillance Images

Federico Cunico
;
Andrea Toaiari;Marco Cristani
2023-01-01

Abstract

We propose a novel image dataset focused on tiny faces wearing face masks for mask classification purposes, dubbed Small Face MASK (SF-MASK), composed of a collection made from 20k low-resolution images exported from diverse and heterogeneous datasets, ranging from 7× 7 to 64× 64 pixel resolution. An accurate visualization of this collection, through counting grids, made it possible to highlight gaps in the variety of poses assumed by the heads of the pedestrians. In particular, faces filmed by very high cameras, in which the facial features appear strongly skewed, are absent. To address this structural deficiency, we produced a set of synthetic images which resulted in a satisfactory covering of the intra-class variance. Furthermore, a small subsample of 1701 images contains badly worn face masks, opening to multi-class classification challenges. Experiments on SF-MASK focus on face mask classification using several classifiers. Results show that the richness of SF-MASK (real + synthetic images) leads all of the tested classifiers to perform better than exploiting comparative face mask datasets, on a fixed 1077 images testing set. Dataset and evaluation code are publicly available here: https://github.com/HumaticsLAB/sf-mask.
2023
9783031376597
Mask recognition, deep learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1125966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact