In particular, a preliminary model is defined which captures the relevant features of spatial datasets, independently from the operation to be optimized and in an unsupervised manner. This model is trained with a large amount of both synthetic and real-world data, with the aim to produce meaningful spatial embeddings. The construction of an embedding model could be intended as a preliminary step for the optimization of many different spatial operations, so the cost of its building can be compensated during the subsequent construction of specific models. Indeed, for each considered spatial operation, a specific tailored model will be trained but by using spatial embeddings as input, so a very little amount of training data points is required for them. Three peculiar operations are considered as proof of concept in this paper: range query, self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as transfer learning, is provided and the advantages of the proposed technique over it are highlighted.

A Generic Machine Learning Model for Spatial Query Optimization based on Spatial Embeddings

Belussi, Alberto;Migliorini, Sara;
2024-01-01

Abstract

In particular, a preliminary model is defined which captures the relevant features of spatial datasets, independently from the operation to be optimized and in an unsupervised manner. This model is trained with a large amount of both synthetic and real-world data, with the aim to produce meaningful spatial embeddings. The construction of an embedding model could be intended as a preliminary step for the optimization of many different spatial operations, so the cost of its building can be compensated during the subsequent construction of specific models. Indeed, for each considered spatial operation, a specific tailored model will be trained but by using spatial embeddings as input, so a very little amount of training data points is required for them. Three peculiar operations are considered as proof of concept in this paper: range query, self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as transfer learning, is provided and the advantages of the proposed technique over it are highlighted.
2024
query optimizer
machine learning
big data
range query
spatial join
spatial embedding
File in questo prodotto:
File Dimensione Formato  
3657633.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1124506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact