
A Generic Machine Learning Model for Spatial Query

Optimization based on Spatial Embeddings

ALBERTO BELUSSI, University of Verona, Verona, Italy

SARA MIGLIORINI, University of Verona, Verona, Italy

AHMED ELDAWY, University of California Riverside, Riverside, United States

Machine learning (ML) and deep learning (DL) techniques are increasingly applied to produce efficient query

optimizers, in particular in regards to big data systems. The optimization of spatial operations is even more

challenging due to the inherent complexity of such kind of operations, like spatial join or range query, and

the peculiarities of spatial data. Although a few ML-based spatial query optimizers have been proposed in

literature, their design limits their use, since each one is tailored for a specific collection of datasets, a spe-

cific operation, or a specific hardware setting. Changes to any of these will require building and training a

completely new model which entails collecting a new very large training dataset to obtain a good model.

This article proposes a different approach which exploits the use of the novel notion of spatial embedding

to overcome these limitations. In particular, a preliminary model is defined which captures the relevant fea-

tures of spatial datasets, independently from the operation to be optimized and in an unsupervised manner.

This model is trained with a large amount of both synthetic and real-world data, with the aim to produce

meaningful spatial embeddings. The construction of an embedding model could be intended as a preliminary

step for the optimization of many different spatial operations, so the cost of its building can be compensated

during the subsequent construction of specific models. Indeed, for each considered spatial operation, a spe-

cific tailored model will be trained but by using spatial embeddings as input, so a very little amount of training

data points is required for them. Three peculiar operations are considered as proof of concept in this article:

range query, self-join, and binary spatial join. Finally, a comparison with an alternative technique, known as

transfer learning, is provided and the advantages of the proposed technique over it are highlighted.

CCS Concepts: • Information systems → Database management system engines; • Computing

methodologies → Machine learning approaches;

Additional Key Words and Phrases: Query optimizer, machine learning, big data, range query, spatial join,

spatial embedding

ACM Reference Format:

Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2024. A Generic Machine Learning Model for Spatial

Query Optimization based on Spatial Embeddings. ACM Trans. Spatial Algorithms Syst. 10, 4, Article 36 (Oc-

tober 2024), 33 pages. https://doi.org/10.1145/3657633

Authors’ Contact Information: Alberto Belussi, Department of Computer Science, University of Verona, Verona, Italy;

e-mail: alberto.belussi@univr.it; Sara Migliorini, Department of Computer Science, University of Verona, Verona, Italy;

e-mail: sara.migliorini@univr.it; Ahmed Eldawy, Computer Science and Engineering, University of California Riverside,

Riverside, California, United States; e-mail: eldawy@ucr.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2374-0353/2024/10-ART36

https://doi.org/10.1145/3657633

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://orcid.org/0000-0003-3023-8020
https://orcid.org/0000-0003-3675-7243
https://orcid.org/0000-0002-6584-1455
https://doi.org/10.1145/3657633
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3657633
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3657633&domain=pdf&date_stamp=2024-10-23

36:2 A. Belussi et al.

1 INTRODUCTION

In the last years, big data analytics has increased its strategic role in supporting decision systems,
thanks to the growing availability of data, sometimes in heterogeneous formats. Very often geo-
referenced data and spatial objects represent a significant part of the datasets subject to analysis,
leading to the development of many spatial big data systems and libraries [10, 11, 38]. Due to
the complexity and richness of some kinds of analysis, in many cases data processing tasks are
structured as pipelines of operations [27], and this allows the definition of many alternative ways
to produce the requested result. Moreover, the existence of different alternatives could also be
originated by the fact that each single operation on spatial data can be implemented in several
ways and by applying different algorithms. This could be further exacerbated in distributed and
cluster-based systems, since the parallel execution of an algorithm often requires the tuning of
several parameters, which depend on both the cluster configuration and the characteristics of
datasets at hand. The immediate consequence of such richness of alternatives is the increasing
importance covered by the presence of query optimizers able to automatically guide towards the
choice of the best execution plan in terms of performances.

The spatial query optimization problem could be formulated as follows: given an operation o
to be performed, the input dataset (or datasets) and the available hardware and software cluster
configuration: (i) identify the different alternative implementations of o available on the cluster, (ii)
estimate the cost of each of them and choose the best one, denoted as i , based on the characteristics
of the input dataset (or datasets), and (iii) estimate the best parameter configurations p for tuning
i in the given cluster. The problem becomes even more complicated if the data processing requires
a sequence of operations to be applied (like in a pipeline), since the optimization of each single
operation could also depend on the operations previously executed or on the operation order. In
general, the main objective of each optimization strategy is to produce an estimation of the cost
of each available alternative solution.

Recently some techniques have been proposed to address the optimization problem described
above, as we will deeply discuss in Section 2. In order to provide an effective solution to this
complex task, many of them are based on estimation approaches implemented through machine

learning (ML) or deep learning (DL) models, with the general architecture summarized in Fig-
ure 1(a). As shown in the figure, these models are completely independent from each other al-
though they could share a lot of similarities depending on what they estimate. For example, two
models that estimate the range query selectivity and the range query running time are expected to
share many similarities in terms of the considered features. However, as a consequence of their in-
dependence, each model requires a heavy-weight training step that works on its own large training
dataset. In particular, the training dataset needs to be large enough to be able to capture the intri-
cate relationship between input data, query characteristics, and hardware specifications. Building
each training dataset is a challenging problem itself, since it has to be diverse enough to capture
the effect of all these parameters on the required estimation.

Given these considerations, the main limitations of existing solutions can be summarized as
follows: (i) each model is tailored to one specific collection of datasets. Thus, if this set changes sig-
nificantly, the model must be retrained, consistently reducing the generality and reusability of the
solution. In order to overcome this problem, it is necessary to use a collection of datasets even syn-
thetically generated, which is able to capture the relevant characteristics and behaviour of spatial
objects in the execution of spatial operations. In this regard, generators of synthetic datasets with
different distributions have been proposed [18, 36], so that models can be trained on a variety of
input datasets and become independent from a given specific collection of datasets. (ii) Models are
usually dedicated to a single specific operation; hence, the extension to other operations requires
to collect new data points, namely to execute a great number of experiments to collect the desired

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:3

Fig. 1. Existing ML-based query optimization models and the proposed spatial-embedding-based approach.

parameters to estimate, and subsequently to retrain the model on them. Moreover, (iii) the results
obtained with a specific cluster cannot be easily generalized to different clusters, since also the
system configuration has an impact on the cost estimation. Therefore, such expensive activity,
performed for building the training set, should be repeated for each cluster configuration. Some
attempts to overcome this last limitation have been proposed [33] where few metrics have
been identified for determining the best partitioning technique, which are independent from
the adopted cluster configurations and depend only on the dataset features. Similarly, some
metrics independent from the cluster configurations are used also in [34] where some models for
estimating the fastest implementation of an operation on a given dataset or pair of datasets have
been proposed. However, this last proposal leads to another limitation: (iv) these solutions are
based on the extraction of some features from the input datasets and such features can be different
according to the operation we need to estimate the cost of. Thus, they must be recomputed for
each operation we consider.

This article proposes a generic ML-based model for spatial query optimization that overcomes
the limitations of existing work. It can estimate different cost parameters regarding the execution

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:4 A. Belussi et al.

of multiple implementations of some spatial operations which are independent from the specific
input collection of datasets and the cluster characteristics. The proposed framework, illustrated in
Figure 1(b), is characterized by the following components:

(1) A first ML model (M1) that is trained on a large dataset D with the goal of extracting a set
of significant features that are independent from the operation and the hardware. Thanks to
its independency and generality, it needs to be trained only once and can be reused for any
spatial operation that we want to build an estimation model for. Moreover, since it is trained
only once, we can invest more time in training this model to make sure it works with a wide
range of datasets including synthetic and real datasets. We call this model spatial embedding,
since it creates a compact summary of the input spatial data that can then be used in any ML
model. To build the spatial embedding, we generate and use a multifaceted histogram repre-
senting the distribution of some features in the reference space of D (Minimum Bounding
Rectangle of D). Furthermore, model M1 can be trained in an unsupervised manner with a
large amount of data, even automatically generated with tools like [18, 36], and whose result
does not depend on the specific spatial operation.

(2) Given an operation and a specific implementation for it, a set of cost parameters are cho-
sen. Operations can be for example: range query, self-join, or binary spatial join. Different
implementations of the same operation can be: index-based and scan-based range query
algorithms, or partition-based and index-based spatial join algorithms.

(3) For each chosen combination of an operation o, implementation i , and parameters p, a model
M2(o, i,p) is trained starting from the spatial embeddings of the input dataset(s) produced
by the first model. Since M1 is already trained on large amount of spatial data, the amount
of data points required for training M2 is reduced, consequently limiting the cost needed to
execute expensive spatial operations.

In summary, the proposed framework is composed of a unique unsupervised model M1 for
producing spatial embeddings, and a supervised model M2 for each cost parameter p of a given
implementation i of a spatial operation o. More specifically, the training of model M1 requires a
large collection of synthetic datasets covering the most common distributions of real spatial data.
This collection can be automatically generated by using the Spider tool [18], which can produce a
large number of synthetic datasets with a small effort. Conversely, each model M2(o, i,p) requires
the execution of the chosen implementation i of the operation o where the cost parameter p is
measured. Thus, the generation of such data points is costly and can require several hours of
processing, depending on the operation we consider. The idea is to use the embedding produced
by M1 as input for each model M2 to reduce the size of the required training set, consequently
reducing both the cost for its generation and the training time. In this way the cost of training M1
is amortized, since it is trained only once, while models M2(o, i,p) can use a training set with less
data points and of reduced size.

This article widely extends our preliminary work [8] where the notion of spatial embedding has
been introduced for the first time and some initial experiments on only synthetic data and range
query operation have been presented. First of all, in order to prove the effectiveness of the frame-
work, in this article, we focus on: (i) three operations, range query, self-join and binary spatial
join; (ii) multiple implementations, the one provided by the library Beast on Spark [10]; (iii) two
cost parameters for each operation, selectivity and number of MBR tests. In this regard, selectivity
is the ratio between the cardinality of the result of the operation execution and the maximum car-
dinality the operation can produce, while the number of MBR tests is the number of comparisons
between two MBRs that are performed during the execution of the chosen implementation. Notice
that the former is independent from the chosen implementation and the cluster configuration,

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:5

while the latter only depends on the implementation. Second, experiments are performed by con-
sidering both synthetic and real datasets. These experiments show that spatial embeddings can be
generated by different models and with different latent dimensions (LD), but the most effective
one, starting from histograms of shape 128 × 128 × 6 is of dimension 3,072 or less. Moreover,
we showed that the same embedding can be used for the estimation of different cost parameters
of different operations. The estimates produced by models M2 outperform some baseline (BL)
values obtained by applying other consolidated estimation techniques. We also demonstrate that
the use of spatial embeddings in place of the original histograms can reduce the dimension of the
training set and also the amount of computational resources needed to train models M2. Finally, a
comparison with an alternative approach, known as transfer learning, is proposed which further
highlights the advantages of the proposed framework based on spatial embeddings.

The remainder of this article is organized as follows. In Section 2, previous solutions for the
estimation of query execution costs are presented. Section 3 introduces the concept of spatial em-
bedding and describes how they can be generated starting from spatial vector datasets. Section 4
presents the three spatial operations considered in this article, range query, self join and two-way
spatial join, together with their cost parameters that we want to estimate. Section 5 illustrates
the results of the performed experiments about the construction of spatial embeddings, and the
estimation of the various operation parameters. In this section, the benefits of using spatial embed-
dings with respect to histograms during training are discussed and a comparison with the transfer
learning technique is also presented. Finally, Section 6 presents conclusions and future work.

2 RELATED WORK

The optimization of query and processing operations has been the subject of many research works
starting from the advent of databases and now revamped with the spread of big data systems. In
this context, spatial data covers a particular role due to the peculiarity of its operations, like spatial
join and range query.

Cost-based optimization – Due to the high cost of such operations and its inherent complexity,
the optimization has been studied in terms of both selectivity estimation and join cost estimation.
Regarding the first aspect, several works have been proposed in the past to define some formulas
or parameters that provide an estimation of the join selectivity, with respect to both uniformly
distributed datasets [3] and skewed datasets [5, 12]. These methods have been recently extended
to deal with large amounts of data processed by big data systems, like SpatialHadoop [11] and
GeoSpark [38]. More specifically, in [31] a cost-based and a rule-based optimizer has been proposed
for MapReduce. It has two limitations: firstly it does not consider all possible spatial join algorithms,
and secondly, it requires to experimentally collect several parameters in order to properly catch
the characteristics of the hardware, algorithms and data at hand. A more detailed model has been
proposed in [7], where the cost is subdivided into three main components: CPU, local, and network
I/O. It essentially overcomes the limitations of the previous work, but its applicability is limited
to uniformly distributed data. The extension of this work to other non-uniform distributions re-
quires the definition of more complex models that can capture the effects of skewness on spatial
operations. In [6], the authors extend the use of the correlation fractal dimension for determining
the level of skeweness, and consequently the kind of distribution, of a spatial dataset. However,
the model has to become very complex to correctly capture all the facets of a dataset distribution
and exploit them for correctly partitioning big datasets in the right way. Therefore, the use of ML
approaches has begun to be experimented as an alternative way to build sophisticated models [33].

ML/DL optimization – Due to the inherent complexity of many big data operations and the
amount of factors that can influence their costs, like the distribution and size of the dataset, or

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:6 A. Belussi et al.

the used algorithms and clusters, the identification of precise theoretical formulas is not always
possible. Therefore, in recent years many different attempts have been made in order to exploit
ML and DL techniques for building sophisticated data-driven models for selectivity estimation [14,
20, 37], join cost estimation [21, 23, 25], and join order enumeration [24]. These methods suffer
from two limitations: (i) they only work with equi-joins and do not support the complex logic
of spatial data, (ii) they are trained with a small number of tables and specific datasets and can
produce an estimation only for them. DeepDB [15] attempted to address the second approach by
building a pure data-driven model that tries to capture the correlation across attributes and the
data distribution of single attributes. This would help in supporting more complex queries and
join operations between multiple tables. It achieves this through a probabilistic query compilation
procedure that translates a generic query into an evaluation of expectations and probabilities. That
approach is a first step towards building a model that applies across many datasets that were not
part of the training process. However, it was limited to alphanumeric databases and cannot be
applied to spatial data and operations. Indeed, spatial data have some specific characteristics that
make them different from any other alphanumerical data type. For instance, spatial data objects
are multidimensional, and in presence of more than one dimension, there is no ordering able to
preserve proximity, while many of the existing techniques for alphanumeric data (like equi-joins)
rely on the fact that neighbouring objects are always adjacent to each other. Moreover, spatial data
have an extent which makes other techniques essentially impractical.

A first attempt to extend the use of ML techniques for distributed spatial join selectivity and
cost estimation has been done in [34]. It differs from existing ML-based query optimizer as it
supports spatial join and can be applied to any input data that was not part of the training set. It
also overcomes the limitation of existing theoretical approaches, because it can deal with skewed
datasets including real-word ones and it works on well-defined data statistics that can be collected
in a simple data scan. However, as emphasized in the introduction, this approach has two main
limitations: (i) it requires to collect a big training set which in turn requires to perform a large
amount of expensive spatial join operations, namely the construction of the training set is much
more costly than the training, (ii) a different training has to be performed for each operation we
want to optimize (see Figure 1(a)). This article performs a step forward by introducing the concept
of spatial embedding with the aim to perform a preliminary unsupervised training on large amount
of data, which can be easily automatically generated [18] and then used in the subsequent phase for
reducing the amount of training data points needed for each particular operation to be optimized
(see Figure 1(b)).

Embedding – Autoencoders are neural networks typically used to learn a compressed represen-
tation of a dataset, known as embedding. The notion of embedding has been developed for solving
the problem of dimensionality reduction and it comes from the assumption that there may exist a
small number of variabilities which can guarantee the “semantics” of the original high-dimensional
data [16]. It has been shown that autoencoding is a powerful way to learn the hidden representa-
tions of data, since most of them focus on the locality-preserving property of embedding [39].

In some sense autoencoders can be considered a form of image compression algorithms, but
they are much more. Their main purpose is to balance two criteria: (i) the compactness of rep-
resentation, measured by its capability of compressing the input and reconstructing it (i.e., like
any compression technique), and (ii) its ability to extract behaviorally relevant variables from the
input, so that similar inputs have a similar compact (embedding) representation. More specifically,
embeddings try to capture the relevant features for the problem at hand, not necessarily those
that allow the best reconstruction. In this way, embeddings allow to provide a similarity measure
between different input datasets, and also a more meaningful clustering of them. In other words,

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:7

the degree of separation in the embeddings translates into a degree of separation in the original
inputs. Embeddings have been successfully used in many DL applications, from natural language
processing (see the Word2Vec technique [28]) to image processing [22]). In this article, we special-
ize the general notion of embedding to the more specific one of spatial embedding. With a spatial
embedding, we can cluster all the possible input datasets with respect to their spatial properties,
reducing the amount of necessary training data points.

Embedding Space for Regions – In recent years an emerging problem known as Learning an

Embedding Space for Regions (LESR) has been defined in literature [13]. The term “region”
refers to an urban region that consists of a location and a neighbour area inside which many
Points-of-Interests (POIs) representing urban functions are located. The main idea is to build a
graph where nodes represent POIs and edges are defined based on several viewpoints on neigh-
borhood, for example, distance or connectivity. Then, graph embedding is used on that network to
define a similarity between regions which capture both spatial and semantic properties. A follow-
up work uses several sources of information when constructing the model, like satellite images,
crowd-sourced geo-tagged data, trajectories, and GPS traces, which produces a multimodal embed-
ding [17]. Even if these works represent a first attempt to use the notion of embedding in the spatial
domain, they are limited to points and the spatial aspects that are used during graph construction.
However, existing work in regional embedding cannot be directly used for our problem due to
two factors. First, the constructed graph only captures the relationship among points and not their
location in the reference space which makes them inapplicable for range queries and spatial joins
where the location is an integral part of the query. Second, the above work only considers points
while we consider objects with extents, for example, lines and polygons, for both range query and
spatial join. The notion of spatial embedding proposed in the following section starts from a vector
representation of a spatial dataset with a variable size and composed of any kind of spatial object,
and can condense all the information influencing the cost of a generic spatial operation.

3 SPATIAL EMBEDDING

DL techniques often follow a pattern that tries to organize the architecture of a neural network
in two steps. In the first step the goal is to extract the significant information that is contained
in the input data so that the second step can be fed with a distillate of the original input where
noise has already been purged. This condensed information is usually called embedding and it can
be orders of magnitude smaller than the original data. The second step focuses on the prediction
of the target value, which can be a class of a taxonomy or a forecast of a given parameter. As
discussed in Section 2, the distillation of the embedding is very often applied in Natural Language
Processing [28] and image processing [22], with the additional effect that the next step is proven
to gain accuracy with respect to models in which embeddings are not distilled.

A neural network used for this kind of task is called autoencorder and can be implemented as
a stack of fully connected layers (stacked autoencoder), or of convolutional neural layers (convolu-

tional autoencoder). As illustrated in Figure 2, in a stacked autoencoder each layer has the respon-
sibility to reduce the dimensionality of the input with also the aim to detect at each step the most
interesting features. Conversely, as illustrated in Figure 3, a convolutional autoencoder typically
reduces the spatial dimensionality of the inputs (i.e., height and width) while increasing the depth
(i.e., the number of feature maps). A convolutional autoencoder has typically a flatten layer which
reshapes the output in order to produce the final embedding.

In its general form, an autoencoder has a symmetric architecture, namely with reference to
Figures 2–3, an autoencoder includes also a stack of reverse layers which allow to reconstruct
the original input dataset starting from the obtained embedding. In this way, the training of an
autoencoder AE is unsupervised, since the input set of data points is at the same time the training

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:8 A. Belussi et al.

Fig. 2. Architectures of a stacked autoencoder.

Fig. 3. Architecture of a convolutional autoencoder.

set and the ground truth for the training. Indeed, the metrics used as loss function for the evaluation
of the trained model is usually the Mean Squared Error and is computed as the average of the
difference between an original data point p0 and the reconstructed one, that is,:

error (p0) = abs(p0 −AE.decode(AE.encode(p0))),

where AE.decode() and AE.encode() refer to the application of the encoding and decoding func-
tionalities of the autoencoder, respectively; while the overall loss function becomes:

loss =
n∑

i=1

error (pi)
2.

n

In this article, we propose to apply this approach to the spatial optimization problem; in partic-
ular, for generating a condensed representation of the input dataset which correctly synthesizes
its peculiar characteristics w.r.t. the cost of spatial operations. As already mentioned in Section 1,
this allows us to factorize some large amount of work independently from the given operations.
Therefore, we can subsequently produce a model tailored for a specific spatial operation with less
training data points. Since this distillation process regards a generic spatial dataset, represented
as a collection of vector geometries, instead of an image, it is necessary to perform the following
preliminary operations:

(1) Define a format for the model input, indeed while images have a fixed structure (i.e., a grid
of pixels), spatial dataset can vary a lot.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:9

Table 1. Datasets used for Training Model M1 which Produces the

Spatial Embeddings

Distrib. Count
Cardinality Size (in bytes)

min max min max

Synthetic datasets

Uniform 1,145 55 K 50 M 19 MB 24 GB
Diagonal 345 17 K 50 M 35 MB 24 GB
Gaussian 343 25 K 46 M 72 MB 22 GB
Parcel 225 24 K 50 M 23 MB 22 GB
Bit 305 23 K 50 M 54 MB 22 GB
Sierpinski 200 52 K 25 M 26 MB 11 GB

Real datasets

TIGER2018 103 3,191 78,741,390 204 KB 3.76 GB
OSM Lakes 148 9,950 2,933,002 4.5 MB 1.37 GB
OSM Parks 127 10,167 10,445,012 3.3 MB 4.20 GB

Columns Count reports the number of datasets for each distribution. Synthetic

datasets have been generated by using the SpiderWeb tool [18], while real

datasets have been obtained by splitting the global dataset available at

https://star.cs.ucr.edu/ by using a fixed grid.

(2) Generate a large number of spatial datasets that cover as much as possible the different real
distributions that characterize geographical information on the Earth surface.

(3) Define the structure of the neural network that, after training, can be used for generating
the spatial embedding.

Regarding point (1), we choose to compute for each dataset a multifaceted histogram of fixed size,
as done in many previous work on the field [1, 2, 9, 26, 30, 32–34]. For deciding which features to
store in each cell of the histogram, we consider the goal of the successive models: evaluate the

cost of an operation on spatial data. Usually, such cost is influenced by the dataset size and the
complexity of the geometries contained in the dataset. As representative features for the dataset
size we choose the cardinality of the input (f1), namely the number of geometries contained in the
input dataset, and the size in bytes (f2) of the input file. Conversely, for measuring the complexity
of the geometries we use: the area of the geometries (f3), namely the area of the region enclosed by
their boundaries, the length on x andy axes of their MBR (f4 and f5), namely the width and height of
their MBR, and finally the number vertices (f6) of their vector representation, namely the number
of points used to describe the boundary of the geometries. Indeed, the vector representation of
geometries is a way to describe spatial objects in terms of the list of points/vertices composing its
external and/or internal boundaries. These features are computed for each cell of the histogram so
that the distribution of the dataset “complexity” in the reference space can be represented by the
histogram itself. In particular, in each cell c we compute the sum of features f1, f2 and f6 and the
average for features f3, f4, and f5 considering only the geometries that intersect the cell c .

Conversely, for point (2), we generate a collection of about 2,550 synthetic datasets with different
distributions and about 380 real datasets. Details concerning such datasets are reported in Table 1.
We also choose different sizes from a minimum of about 20 MB to more that 20 GB. Notice that the
number of datasets with uniform distribution is higher with respect to the number of other distri-
butions (see column Count). This choice is necessary because with highly skewed distributions
there are many empty cells inside the reference space. Therefore, to ensure that the computed
histograms are balanced between zero and non-zero values, and to avoid creating a model that

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://star.cs.ucr.edu/

36:10 A. Belussi et al.

over-estimates zeros, we need in this phase a bigger number of uniformly distributed datasets
which compensates the overall presence of skewed distributions (independently from their type).
The final size of the dataset containing the multifaceted histograms computed on these spatial
datasets, which represent the input data points for the first model M1 of the architecture in
Figure 1(b), is 2.2 GByte.

As final preparation step, we need to normalize the values of the features in each cell of the
histograms. Different functions can be applied to normalize data before training. We chose the
simplest one, which requires firstly to compute the minimum and the maximum value for each
feature among all histograms, producing two arrays of values min[] and max[], and secondly to
normalize each original list of feature vor iд[i][] as follows:

vnorm[i][j] =
vor iд[i][j] −min[i][j]

max[j] −min[j]
. (1)

Finally, relatively to point (3), we teste both kinds of mentioned autoencoders: the stacked and
the convolutional ones. For the stacked autoencoders we choose three fully connected layes (as
in Figure 2), while for the convolutional autoencoders we use three convolutional layers (see
Figure 3). We try different values for the embedding dimension (also called LD), and different
numbers of nodes in each layer. As we will see in Section 5, the trained models are able to recon-
struct histograms which are very similar to the original one (see for instance Figure 4). However,
as we mentioned in Section 2, the aim of spatial embeddings is not necessarily to rebuild correctly
the original histograms, but to correctly distill the significant features that are relevant for the
following tasks, and, in our case, for the estimation of the cost parameters of spatial operations.
Therefore, taking this consideration in mind, we do not choose for the second step only the model
that produces the best reconstruction, namely the one with the smallest reconstruction error, but
we consider a set of promising models that while keeping good behaviour are able to reduce as
much as possible the LD. Indeed, the more we reduce the size of the spatial embedding, the more
we can obtain a significant distillation of the dataset characteristics for training the next model.

In the next section, we describe how the results obtained by model M1 can be used to train a
set of models M2, each one tailored for a specific spatial operation, considering in particular the
range query, the self-join and the binary spatial join.

4 ESTIMATING THE COST OF SPATIAL OPERATIONS

After training the first model M1, we need to define the second part of the proposed approach
in Figure 1(b). As previously mentioned, while M1 can be trained only once starting from a large
collection of spatial datasets covering a great variety of distributions, the second model has to be
defined for each operation and for each metric that we want to use for measuring its cost.

In this article, we consider three spatial operations: the Range Query, the Self Join and the Binary

Spatial Join. For the first one we use selectivity as metric for estimating its cost, while for last
two we use two metrics: selectivity and number of MBR tests. As already discussed in literature,
these metrics are good indicators of the cost of range query and spatial join operations [3, 34],
respectively. In the following the generic term spatial join is used to denote both the self-join and
the binary spatial join when there is no reason for distinguishing them.

In case of range query, selectivity is the ratio between number of elements returned by the
operation and the total number of elements in the input dataset.

selRQ (D,R) =
|{д ∈ D : д ∩ R � ∅}|

|D |
, (2)

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:11

where D is the input dataset, R is the range window used by the operation and д ∩ R returns the
result of the intersection between the geometry д and the query window R.

Similarly, join selectivity is defined as the ratio between the actual number of pairs produced by
the join operation and the number of pairs produced by the cross product:

selS J (D1,D2) =
|{(д1,д2) ∈ D1 × D2 : д1 ∩ д2 � ∅}|

|D1 × D2 |
. (3)

Clearly in case of the self join, the two datasets D1 and D2 are exactly the same.
Finally, in spatial join the number of MBR tests reports the number of tests performed on MBRs

by the operation implementation itself. It is computed as:

#mbrS J (D1,D2) =

�����
∑

pi ∈Pi

qj ∈Pj

∑
д1,д2∈
pi×qj

#MBRtest(д1 ∩ д2)

�����
/|D1 × D2 |, (4)

where P∗ returns the set of partitions in which the dataset D∗ has been subdivided in order to
perform the join operation, while д ∈ p returns the geometries contained in the partition p, and
#MBRtest(д1 ∩ д2) computes the number of MBR comparisons that are performed for testing the
not empty intersection between two geometries д1 and д2. Notice that, unlike Equation (3), all
(д1,д2) pairs are considered even if they do not overlap, since some of them still need to be tested
to know that they are not in the result. For the self-join, not only the datasets D1 and D2 are the
same, but also the partitions Pi and Pj .

In the next subsections, we will show how they can be used in our second model M2 for estimat-
ing the cost of the three spatial operations, while Section 5 will illustrate some experimental results
about the ability of spatial embeddings to distill the significant features necessary to estimate the
desired cost in the correct way.

4.1 Range Query Estimation

As discussed in the previous section, for each spatial operation we need to instantiate a model M2
which will work on the dataset embedding produced byM1 and a set of specific information. In case
of the range query, we add to the embedding the following eight features: 4 values representing
the dataset MBR and 4 values representing the range query window. Therefore, each input data
point for model M2, which estimates range query selectivity, is the tuple:

〈emb(D),minx (D),miny (D),maxx (D),maxy (D),
minx (R),miny (R),maxx (R),maxy (R),σ 〉

(5)

where emb(D) is the embedding of D computed by model M1, while minx (D), miny (D), maxx (D),
maxy (D) is the MBR of D andminx (R),miny (R),maxx (R),maxy (R) is the MBR of the range query
window, finally σ is the selectivity value to be estimated. The main idea is that the MBR of the
dataset and the MBR of the range query window are enough to specialize the information distilled
by the spatial embedding.

Example 4.1. Let us consider as an illustrative example the case of a dataset D composed of
100K geometries which are enclosed in an MBR described by the minimum coordinate (0, 0) and
a maximum coordinate of (1, 1), while the range window R has an area of 10−8 starting from a
bottom left coordinate of (0.1, 0.1). The tuple in Equation (5) becomes:

〈emb(D), 0, 0, 1, 1, 0.1, 0.1, 0.1001, 0.1001, 0.05〉,

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:12 A. Belussi et al.

where emb(D) is the embedding of D represented as a tensor whose dimension depends on the
chosen LD, while σ = 0.05 means that only 5% of the geometries in D intersects the range query
window.

4.2 Spatial Join Estimation

The data points for the binary spatial join operation are built by following the same idea illustrated
in the previous section for the range queries. However, in this case we have two datasets at hand
that have to be represented; in particular, their spatial embeddings have to be properly combined.
We chose to synthesize the spatial embeddings of the two input datasets by overlapping them, so
that if they have individually a dimension of for instance 32 × 32 × 3, we obtained a tensor of 32 ×

32 × 6. Therefore, similarly to Equation (5), the input of model M2 for the estimation of the spatial
join metrics is given by the following tuple:

〈emb(D1D2),minx (D1),miny (D1),maxx (D1),maxy (D1),
minx (D2),miny (D2),maxx (D2),maxy (D2),v〉

(6)

where emb(D1D2) is the representation of the combined embedding, the following four values
represent the MBR of D1, the other four values are the MBR of D2, while v is the value of the
metric to be evaluated (i.e., selectivity or number or MBR tests).

For the self join, the representation is essentially the same except that D1 and D2 are the exactly
same dataset.

Example 4.2. Let us consider as an illustrative example the case of two datasets D1 and D2 with
the following characteristics.D1 contains 50 K geometries which are enclosed in an MBR described
by the minimum coordinate (0, 0) and a maximum coordinate of (0.8, 0.8), while D2 contains 25
K geometries which are enclosed in a MBR with minimum coordinate (0.3, 0.3) and a maximum
coordinate of (0.9, 0.9). The tuple in Equation (6) becomes:

〈emb(D1D2), 0, 0, 0.8, 0.8, 0.3, 0.3, 0.9, 0.9, 0.01〉, (7)

where emb(D1D2) is obtained by combining the embedding of the D1 with the embedding of D2.
As mentioned above, if for instance each single dataset has an embedding of size 32 × 32 × 3,
emb(D1D2) is represented by a tensor of dimension 32 × 32 × 6. Finally, if v is the selectivity, a
value equal to 0.01 means that only 1% of the cartesian product (50K × 25K) will be included in the
result. Conversely, if the element v represents the number of MBR tests and has a value of 10,000,
it means that 10,000 intersection tests between MBRs will be necessary to identify the spatial join
result.

5 EXPERIMENTS

Considering the architecture of the proposed approach, we divide the experiments in two parts.
First, we need to train model M1 for obtaining a set of candidate autoencoders which are able to
generate meaningful spatial embeddings of a given histogram dataset representation. Second, we
need to train a model M2 for each considered spatial operation and parameter.

The source code developed for the experiments (together with the training and test sets) are
available as a GitHub repository.1 The experiments have been performed on a server equipped
with an Intel i9-10900X processor, with 64 GByte of RAM, a GPU NVIDIA Quadro RTX A5000
GPU with 24 GByte of dedicated RAM, and Ubuntu 22 operating system with Nvidia driver version
535.86.05 and CUDA version 12.2.

1https://github.com/smigliorini/spatial-embedding

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://github.com/smigliorini/spatial-embedding

A Generic Machine Learning Model for Spatial Query Optimization 36:13

Table 2. Experiment Exp1
M1 Performed by using Stacked Autoencoders, which have been Trained

with Only Synthetic Datasets and Tested on Both Synthetic and Real Datasets

Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE WMAPE

time(sec) LOSS REAL

AES1 384 1,024,512 105 9.6E-04 1.5E-03 0.363 57.12

AES2 1,536 1,024,512 104 1.1E-03 1.6E-03 0.356 54.06

The spatial embeddings have been extracted from histograms of 128 × 128 × 6 and the training has been performed

with 50 epoches.

5.1 Spatial Embeddings

As previously discussed, the training of model M1 requires the preparation of a set of data points
by generating the histograms for the datasets listed in Table 1. Every histogram is a grid of 128×128
cells, each one containing six features, as described in Section 3. Given such set of input data points,
we perform four set of experiments in order to find the best architecture for M1. The four set of
experiments will be denoted as Exp1

M1, Exp2
M1, Exp3

M1 , and Exp4
M1, respectively. At the end of this

phase, we select a collection of 8 good autoencoders which will be tested in the second part of the
experiments regarding model M2. For not cluttering the presentation, we report in this section
only the experimental results obtained with the selected good autoencorders, while the detailed
results of each experiment are contained in Section A.1 of Appendix A.

In the first set of experiments, denoted as Exp1
M1, we consider for the training only synthetic

datasets and the used models are stacked autoencorders composed of three dense layers. In this
experiment, we evaluate also the capability of a stacked autoencoder trained with only synthetic
datasets to perform well also on real datasets. Table 2 reports the results obtained for the selected
autoencoders, which are denoted as AES1 and AES2. In the table, the values of the hyperparame-
ters (column Hyperpar.), that is, the number of neurons in each fully connected layer, and the
LD (column Latent Dim.), that is, the dimension of the produced spatial embedding, are reported
together with the final values of the loss and val loss functions (columns LOSS and VAL LOSS).
For the accuracy evaluation we use the standard WMAPE metric, namely the Weighted Mean Ab-
solute Percentage Error, since it allows us to correctly treat zeros in the set of actual and predicted
values. It is a variant of MAPE in which the mean absolute percentage error is treated as a weighed
arithmetic mean. Most commonly the absolute percent errors are weighted by the actual values,
which leads to the following formula:

WMAPE =

∑n
i=1

(
wi ·

|Ai − Pi |

|Ai |

)
∑n

i=1wi
=

∑n
i=1

(
|Ai | ·

|Ai − Pi |

|Ai |

)
∑n

i=1 |Ai |
=

∑n
i=1 |Ai − Pi |,∑n

i=1 |Ai |

where Ai are the actual value, while Pi are the predicted value.
More specifically, we compute the WMAPE error on both: (a) a synthetic test set obtained by

selecting a 20% of the automatically generated synthetic datasets, that the model has not seen
before, and (b) an additional set of real data points produced by considering 194 real datasets, from
TIGER and OSM sources. With reference to Table 2 (and Table 10 of Appendix A), the values in
column WMAPE are those computed by performing the test on only synthetic datasets, while the
values in column WMAPE REAL are those computed considering the collection of real datasets
during the test.

Notice that, the metric WMAPE for fully connected models (stacked autoencoders) is good, in
the best case it is around 0.36, but these dense networks are not able to generalize well to real
cases. Indeed, when applied to real datasets they produce a WMAPE above 50. More details about
the other tested but not selected configurations can be found in Table 10 of Appendix A.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:14 A. Belussi et al.

Table 3. Experiment Exp2
M1 Performed by using Convolutional Autoencoders, which have been

Trained with Only Synthetic Datasets and Tested on Both Synthetic and Real Datasets

Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE WMAPE

time(sec) LOSS REAL

AEC1 768 filter(128,64) 121 1.3E-03 1.3E-03 0.352 1.28

AEC2 3,072 filter(64,32) 80 9.8E-04 9.9E-04 0.319 1.48

The spatial embeddings have been extracted from histograms of 128 × 128 × 6 and the training has been performed

with 50 epoches.

Fig. 4. Application of the encoding-decoding process performed by a convolutional autoencoder with a

LD of 1,536, 3 layers and filter (64,32,3), that has been trained with only synthetic data and tested on both

some synthetic and real datasets.

In the second set of experiments, denoted as Exp2
M1, we perform the training considering again

only synthetic datasets, but by using convolutional autoencoders, in place of stacked ones. As
shown in Table 3 (and Table 11 of Appendix A), in this case the models not only produce a similar
quality during the reconstruction of synthetic datasets (i.e., WMAPE is around 0.32 in the best case),
but they are also able to generalized better obtaining, with real datasets, a WMAPE around 1.5 on
average (see column WMAPE REAL). Figure 4 shows an example of application of the encoding-
decoding process performed by a convolutional autoencoder trained with only synthetic datasets
and tested on both synthetic and real datasets. In particular, for each group the first row shows
the original histogram, while the second row reports the decoded one. We can notice that the
distribution of the values is maintained in the decoded histograms. To obtain colored images, we
convert feature 0, 2, and 4 in RBG values, similar images (but with different colors) can be obtained
by considering the other three features.

We also consider a third and fourth set of experiments, denoted as Exp3
M1 and Exp4

M1, with the
aim to evaluate the impact of including also some real datasets in the training of the autoencoders.
Table 4 reports the results obtained with the two autoencorders selected from each set of exper-
iments. In particular, Exp3

M1 and autoencoders AES∗
refer to a stacked autoencoder trained with

both synthetic and real data, while Exp4
M1 and autoencoders AEC∗

are related to a convolutional

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:15

Table 4. Experiments Exp3
M1

and Exp4
M1 Performed by using Stacked and Convolutional

Autoencoders, Respectively, which have been Trained with Both Synthetic and Real Datasets

Experiment Autoencoder Latent Dim. Hyperpar. Training LOSS VAL WMAPE

time(sec) LOSS

Exp3
M1 AES3 48 16,32 53 1.7E-03 2.8E-03 2.84

Exp3
M1 AES4 384 16,32 51 1.6E-03 2.6E-03 2.42

Exp4
M1 AEC3 1,536 filter(128,64) 143 7.1E-04 7.0E-04 0.51

Exp4
M1 AEC4 768 filter(64,32) 98 1.1E-03 1.1E-03 0.54

Models with subscript S∗ are stacked autoencoders, while models with subscript C∗ are convolutional autoencoders.

Spatial embeddings have been extracted from histograms of 128 × 128 × 6 and the training has been performed with 50

epochs.

Fig. 5. Application of the encoding-decoding process performed by stacked autoencoder with a LD of 384,

2 layers and output (512,256), which have been trained and tested with both synthetic and real datasets.

autoencoder trained with both synthetic and real datasets. Detailed results are reported in
Tables 12 and 13 in Appendix A for stacked and convolutional autoencoders, respectively. In this
case column WMAPE REAL is not used, because real datasets are used during both the training
and the test phase. Moreover, we can notice that convolutional models are able to produce better
results also in this case, with WMAPE values similar to the ones obtained when only synthetic
datasets are considered during training and test (see column WMAPE in Table 3).

Figure 5 illustrates some example of encodings and decodings performed by a stacked autoen-
corder trained and tested with both synthetic and real datasets. These cases exemplify the fact
that such dense model performs well with syntethic datasets, but their reconstructions are worsen
that the one in Figure 4 when real datasets are considered (see cases 4 and 6). Finally, Figure 6
specifically compares the ability of a stacked and a convolutional autoencorder in working with
real datasets. In particular, we use them with two real datasets representing roads and municipal-
ities of Italy. Columns (a) and (b) are produced by a dense model, while columns (c) and (d) are
obtained with a CNN model. We can notice that the convolutional autoencoder produces a signif-
icant improvement in the reconstruction of the original histograms. However, since we are not
specifically interested in the reconstruction capabilities of the autoencoders, but in their ability

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:16 A. Belussi et al.

Fig. 6. Application of the encoding-decoding process to 2 real datasets representing roads and municipalities

of Italy not used in model training. (a) and (b) are produced by a stacked autoencoder, while (c) and (d) by a

convolutional autoencoder.

to properly distill the characteristics of a spatial datasets, we decide to not discard the stacked
autoencoders entirely. In particular, given this first session of experiments, we select all the eight
models in Tables 2–4 for the generation of the embeddings describing the input datasets:

— Four stacked autoencoders:AES1 andAES2 (trained with only synthetic data and a LD of 384
and 1,536, respectively), AES3 and AES4 (trained with also real data and a LD of 48 and 384,
respectively);

— Four convolutional autoencoders:AEC1 andAEC2 (trained with only synthetic data and a LD
of 768 and 3,072, respectively), AEC3 and AEC4 (trained with also real data and a LD of 1,536
and 768, respectively).

In the second part of the experiments, which are discussed in the following subsections, we
focus on the definition of specific models M2 for estimating the chosen cost parameters for range
queries, self-join and binary spatial join.

5.2 Range Query

For the production of the input data points, we consider a set of about 2,950 datasets with various
distributions and various sizes, where about 380 are real datasets, as reported in Table 1. As regards
to synthetic datasets, in order to simulate their various placements inside the reference space and
the fact that they occupy a small area inside it, we randomly place them, with an MBR of at most
(0, 0, 1, 1), inside a reference space with MBR (0, 0, 10, 10). Conversely, real datasets were extracted
from TIGER and OSM collections by splitting them to generate smaller subsets. For each selected
synthetic and real datasets, we randomly produce 50 range queries for synthetic datasets and 100
range queries for real datasets, with different extents and positions. Therefore, we executed about
100,000 range queriesQi on synthetic datasets, and about 36,000 on real datasets, collecting for each
one the selectivity (i.e., σ (Qi)). The query windows, generated in the reference space (0, 0, 10, 10),
have an area between 1.8 × 10−11 and 7.3 × 102. The input data points built in this way are finally
normalized by using themin −max formula in Equation (1).

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:17

Fig. 7. Comparison among M2 models trained with spatial embeddings or directly with histograms. In

(a) the WMAPE error for the two cases is shown as the cardinality of the training set is increased, while

(b) compares the size in MByte of the input sets needed for the two cases for obtaining the same WMAPE

values.

Before using this set of collected data points for training model M2, we extract from it a subset
of cases with the aim to obtain a balanced training set. More specifically, we use an undersampling

strategy through which we select around 64,000 data points for synthetic datasets from the original
100,000, so that all intervals of possible selectivity values between 0 and 1 are almost equally
represented. In the balancing procedure, we subdivide the interval of possible values [0, 1] into
ten sub-intervals: [0, 0.1], . . . [0.9, 1]. In the following subsections, the balanced set of synthetic
data points for selectivity is denoted as RQbal

σ . We try to produce a balanced set of data points also
for real datasets following the same approach. This balanced set of real data points for range query
selectivity is denoted as RQRbal

σ .

5.2.1 Histograms vs Embeddings. This first experiment has the aim to demonstrate the benefits
of using spatial embeddings in terms of required size of the training set. In particular, we show that
by using spatial embeddings as input for a prediction model M , instead of the original histograms,
we can reach the same accuracy with less training data points and with data of smaller size.

To perform this experiment we prepare two series of data point collections for estimating the
range query selectivity by following the approach described in Equation (5). In particular, the
first series uses the embeddings produced by autoencoder AEC2, which have the biggest LD, as
component emb(D) of the tuple shown in Equation (5). Conversely, the second one substitutes this
component by using directly the whole dataset histograms of size 128 × 128 × 6; thus, increasing
the size of each data point. Each series of input collections has an increasing number of data points,
from 485 to 15,474.

Figure 7(a) compares the WMAPE errors obtained in the two cases (i.e., training with spatial
embeddings or with histograms) as the dimension of the data point collection increases. The figure
shows that using the spatial embeddings as input always produces an improvement, since the
WMAPE decreases of 24% in average. Figure 7(b) shows that in order to obtain a similar accuracy
of the model, in terms of WMAPE, the network fed by histograms needs a training set that is an
order of magnitude bigger than the training set composed of the corresponding embeddings. This
is reflected also in the time needed to execute the training which is for the first configuration in
Figure 7(b) about 400 seconds for the training with embeddings and 3,200 seconds for the training
with histograms. These results confirm the potentialities of using spatial embeddings in place of the
original histograms. Therefore, the following experiments focus only on models fed with spatial
embeddings.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:18 A. Belussi et al.

Table 5. M2 for Range Query Selectivity when it is Trained with Only Synthetic (64,000 Data Points) or

Both Real and Synthetic Data (32,000 + 32,000 Data Points) and in Combination with the Spatial

Embeddings Presented in Table 4

M2 architecture M2 Training Autoencoder Hyperpar. Time (sec) WMAPE Baseline

M2dnn Synth. AES1 dH3 2,007 0.0782
0.691

M2cnn Synth. AEC2 cH4 1,835 0.0894

M2dnn Synth. + Real AES3 dH2 1,676 0.2143
1.320

M2cnn Synth. + Real AES4 cH4 2,700 0.2007

Hyperparameters for M2dnn are dH2 = 128,64,64,32,32, and dH3 = 256,128,128,64,64 while for M2cnn are cH4 =

512,256,256,128. Time is the amount of time needed for training in seconds.

5.2.2 Selectivity of Range Queries. The second experiment regards the prediction of the range
query selectivity. As reported in Equation (5), each training data point will contain the information
about a given dataset D and the extent of the query window w . More specifically, each dataset D
is described in terms of its spatial embedding and the coordinates of its MBR. In Section 5.1, we
selected 8 autoencoders (i.e., AEi) as candidate models for producing spatial embeddings. Starting
from them and from the set RQbal

σ previously introduced, we generate 8 different collections of

data points AEi (RQ
bal
σ), each one characterized by a different size according to the LD of the em-

beddings generated by AEi . The size of the obtained input datasets varies from about 0.044 Gb for
a LD of 48, to 2.31 Gb for a LD of 3,072.

Referring back to Equation (5), the input of M2 is composed of two parts: (a) the embedding of
D and (b) 8 values representing the MBR of D and of the query window w . Given such structure,
we consider two alternative approaches for the architecture of model M2:

— In the first one (called M2dnn) the input (a) is processed by a dense (DNN) model composed
of three fully connected layers, then the obtained result is concatenated with input (b) and
two additional fully connected layers produce the final estimate.

— Conversely, in the second architecture (M2cnn) input (a) is processed instead by two convo-
lutional (CNN) layers and the result is concatenated with (b) and given to the same final two
dense layers.

In both cases, we tested different configurations of the hyperparameters in combinations with the
8 sets of data points mentioned above. Moreover, each model has been initially trained and tested
with only synthetic data (i.e.,AEi (RQ

bal
σ)) and then with both real and synthetic data. In this regard,

a new collection of data points is obtained by joining AEi (RQ
bal
σ) and AEi (RQR

bal
σ); in particular,

we chose 32, 000 points from the first set and an equal amount from the second set.
Table 5 reports for each choice of M2 architecture, namely M2dnn and M2cnn , the best configu-

ration of hyperparameters (column Hyperpar.) together with the autoencoder (column Autoen-

coder) used for the generation of the spatial embeddings (see Tables 2–4). Column M2 Training

distinguishes the case in which M2 is trained and tested with only synthetic data (set AEi (RQ
bal
σ),

containing around 64,000 data points) or with both synthetic and real data (about 64,000 data
points where an half comes from AEi (RQ

bal
σ) and the other from AEi (RQR

bal
σ)). Column Baseline

reports the error of the BL using WMAPE metrics. As BL, we use the theoretical formula proposed
in [5] for estimating the selectivity of range query, that has been applied to the test set. Notice
that all experiments use the same test set. Detailed results are reported in Table 14 and Table 15 of
Appendix A for the case M2dnn and M2cnn , respectively.

Considering the case in which the model is trained and tested with synthetic data only, the best
results are obtained with the architecture M2dnn and the autoencoderAES1, with a WMAPE equal
to 0.0782. As you can notice, in any case the proposed model performs better than the BL method
which produces on the corresponding test set a WMAPE of 0.691. Conversely, when also real data

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:19

are used both in training and testing, the best predictions are obtained with the architectureM2cnn

with embeddings generated by autoencoder AES4 producing a WMAPE of 0.2007 when executed
on the test set.

The results obtained with the range query are used also for discarding some model combinations
to be used in the following experiments regarding the spatial join. In particular, based on the
complete set of experiments reported in Table 15 of Appendix A, we selected a stacked and a
convolutional autoencoder for training and testing on synthetic data, which are, respectively,AES1

and AEC2, and a stacked and convolutional autoencoder for training and testing on both synthetic
and real data, namely AES4 and AEC3. These are the best embeddings for the estimation of the
range query selectivity in each respective category.

5.3 Spatial Self-join

The self-join operation runs on a single dataset. Given a dataset D, it finds all pairs of distinct
records that have overlapping geometries. To perform this operation in Spark, we first partition the
dataset using the R*-Grove partitioner [35] while replicating boundary objects to all overlapping
partitions. Then, we process each partition independently with a plane-sweep self-join algorithm
to find overlapping records and remove duplicates.

To perform the experiments related to the two parameters of the self join, namely the selectivity
and the number of MBR tests, we consider the synthetic and real datasets reported in Table 1 and
for each of them we perform the join with itself, collecting both parameters of interest. As done
for the range query operation, before using these data for training M2, we need to extract a subset
of cases which represent a balanced training set. For this purpose we use again an undersampling

technique which produces four sets of data points: SJNbal
σ , SJNRbal

σ , SJNbal
#MT , and SJNRbal

#MT . In

particular, SJNbal
σ contains about 4,190 data points describing the selectivity of the self-join per-

formed on a selection of the synthetic datasts, while SJNbal
σ contains about 4,784 elements and

is obtained by adding to the previous set the data regarding the selectivity computed on the real

datasets. Similarly, SJNbal
#MT and SJNRbal

#MT have the same cardinality and structure of the previous
one, but collect as parameter the number of MBR tests performed during the self-join execution.
As described at the end of the previous section, for the experiments on self-join, we do not use
all autoencoders considered for the range query, but we use the results obtained in these previous
experiments to select the best ones to apply also for the estimation of the self-join parameters. In
particular, we consider the following 4 autoencoders: AES1, AEC2 and AES4 and AEC3, the first two
are used for training and testing M2 only on synthetic data, while the last two are used for training
and testing M2 on both synthetic and real data. Indeed, given the four collections of data points:

SJNbal
σ , SJNRbal

σ , SJNbal
#MT , and SJNRbal

#MT , we need to apply on them the chosen autoencoders to
produce the embeddings needed as input ofM2. This produces a collection of 8 data points, the first

4 for synthetic data: AES1(SJNbal
σ), AES1(SJNbal

#MT), AEC2(SJNbal
σ), AEC2(SJNbal

#MT), and the other 4

for real data: AES4(SJNRbal
σ), AES4(SJNRbal

#MT), AEC3(SJNRbal
σ), and AEC3(SJNRbal

#MT).
Table 6 reports the best configurations for the selectivity estimation, while Table 7 reports the

best configurations for the estimation of the number of MBR tests. Detailed results about all the
other considered configurations are contained in Tables 16 and 17 of Appendix A. Notice that
since the number of MBR tests has been divided by |D × D |, this metric is always less than one.
In the experiments we use as the BL devised in [7] which estimates the cost of the distributed

join (DJ) algorithm. To apply it for self join, we use the dataset statistics for the two inputs in the
formula.

The obtained results demonstrate that the selected autoencoders perform quite well with the
estimation of both parameters considered for the self-join. In particular, convolutional autoen-
coders seem to better capture the characteristics of the datasets when both synthetic data only, or

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:20 A. Belussi et al.

Table 6. M2 for Self-join Selectivity when it is Trained with Only Synthetic (4,194

Data Points) or Both Real and Synthetic Data (4,784 Data Points) and in Combination

with the Spatial Embeddings in Table 4

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

M2dnn Synth. AEC2 dH3 108 0.2138
0.69

M2cnn Synth. AEC2 cH4 128 0.2211

M2dnn Synth. + Real AES4 dH1 160 0.3557
2.0

M2cnn Synth. + Real AEC3 cH5 233 0.3010

Hyperparameters for M2dnn are dH1 = 64,32,32,16,16, and dH3 = 256,128,128,64,64, while for

M2cnn are cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Time is the amount of time needed

for training in seconds.

Table 7. M2 for the Number of MBR Tests in Self Join when it is Trained with Only

Synthetic or Both Real and Synthetic Data and in Combination with the Spatial

Embeddings in Table 4

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

M2dnn Synth. AEC2 dH4 139 0.3128
0.96

M2cnn Synth. AEC2 cH4 182 0.3232

M2dnn Synth. + Real AES4 dH1 134 0.4452
0.96

M2cnn Synth. + Real AEC3 cH5 174 0.3001

Hyperparameters for M2dnn are dH1 = 64,32,32,16,16, and dH4 = 512,256,256,128,128, while for

M2cnn are cH4 = 512,256,256,128, and cH5 = 1024,512,512,256. Time is the amount of time

needed for training in seconds.

synthetic and real datasets together are considered. Relatively to the selectivity of self-join, en-
coderAEC2 provides essentially the same accuracy with both kinds of M2 architectures when only
synthetic data is considered, while in presence of both synthetic and real datasets the best encoder
is again the convolutional one, namelyAEC3. Similar results are obtained also with the tests regard-
ing the estimation of the number of MBR tests, where again the best encoder for synthetic data
is AEC2, while when real and synthetic data are considered the best performances are obtained
with AEC3 with a convolutional M2 model. The obtained results outperform the ones obtained
with the BL in terms of the achieved accuracy, and also the performances. The obtained WMAPE
errors are in line with what has been obtained for the estimation of the range query selectivity
when synthetic and real data are considered together, confirming that spatial embeddings provides
promising generalization capabilities. Notice that the BL we used performs equally well for syn-
thetic and real data since the partitioning step captures data skewness and balances the cost across
partitions which makes the cost estimation easier.

5.4 Binary Spatial Join

Given a collection ofn input datasets, the amount of spatial join operations that need to be executed
for producing a training set covering all possible cases is equal to (n × (n − 1))/2. This can lead
to a very large number of costly operations to be performed. Therefore, we apply a clustering
technique, exploiting also the presence of the computed embeddings, in order to select the most
significant pairs on which actually perform the join operation. In particular, starting from about
2,550 synthetic datasets, we select about 11,000 significant pairs, while starting from about 380 real
datasets, we generate a subset of around 2,000 pairs.

Given these pairs of datasets (Di ,D j), we compute the spatial join between Di and D j by apply-
ing two consolidated implementations of this operation provided by the Beast library on Spark:

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:21

Table 8. M2 for Spatial Join Selectivity when it is Trained with Only Synthetic (11,000

Data Points) or Both Real and Synthetic Data (13,000 Data Points) and in Combination

with the Spatial Embeddings in Table 4

M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

M2dnn Synth. AEC2 dH5 431 0.2251
0.7274

M2cnn Synth. AEC2 cH4 550 0.2810

M2dnn Synth. + Real AES4 dH1 131 0.2636
0.8420

M2cnn Synth. + Real AEC3 cH5 175 0.2125

Hyperparameters for M2dnn are dH1 = 64,32,32,16,16, and dH5 = 1024,512,512,256,256, while for

M2cnn are cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Time is the amount of time needed for

training in seconds.

the Spatial Join Map Reduce (SJMR) [40] and the DJ with Index [11, 38]. The first one is a
MapReduce implementation of the Partition Based Spatial Merge (PBSM) Join [29] and has
been designed to efficiently perform a spatial join on non-indexed datasets. The second one is a
MapReduce adaptation of the Grid File Spatial Join algorithm [19] and works on previously in-
dexed datasets. The execution of these 11,000 join operations on synthetic datasets and 2,000 join
operations on real datasets tooks almost one month for each implementation.

As regards to the selectivity estimation, since this metric does not depend on the algorithm,
we use the results of the SJRM execution to produce both a set of 11,000 synthetic data points,

denoted as JNbal
σ , and a set of 2,000 real data points, denoted as JNbal

σ . Conversely, for the number
of MBR tests depends on the selected algorithm. This means that we also generates the following

sets of data points: SJbal
#MT and SJRbal

#MT for SJMR and DJbal
#MT and DJRbal

#MT for DJ. These sets have

the same cardinality and regards the same pairs of JNbal
σ and JNbal

σ , but they collect as parameter
the number of MBR tests performed by SJMR and DJ algorithms, respectively.

As described done in the previous section, for the experiments on the binary spatial join, we con-
sider the following 4 autoencoders:AES1,AEC2 andAES4 andAEC3, the first two are used for train-
ing and testing M2 only on synthetic data, while the last two are used for training and testing M2

on both synthetic and real data. Indeed, given the six collections of data points: JNbal
σ , JNbal

σ , SJbal
#MT ,

SJRbal
#MT , DJbal

#MT , DJRbal
#MT , we need to apply on them the chosen autoencoder to produce the embed-

dings needed as input of M2. This produced 12 collections of data points, the first 6 for synthetic

data: AES1(JNbal
σ), AES1(SJbal

#MT), AES1(DJbal
#MT), AEC2(JNbal

σ), AEC2(SJbal
#MT), and AEC2(DJbal

#MT), and

othe other 6 for real data:AES4(JNbal
σ),AES4(SJRbal

#MT),AES4(DJRbal
#MT),AEC3(JNbal

σ),AEC3(SJRbal
#MT),

andAEC3(DJRbal
#MT) These are the sets of data points used in the experiments illustrated in Tables 8,

9, and 18–20 of Appendix A.
In the experiments we use as the BL the model proposed in [34]. Notice that this model has been

trained again with the new datasets JNbal
σ , JNbal

σ , SJbal
#MT , SJRbal

#MT , DJbal
#MT , and DJRbal

#MT , which are
much richer and diverse than the dataset used in the original article. We found that with these
new datasets, the performance started to drop due to the more complex data distributions, for
example, Sierpinski distribution and real datasets. Table 8 reports the best configurations for the
selectivity, while Table 9 reports the best configurations for the number of MBR tests (notice that,
since this metric is divided by |D1 × D2 |, it is always less than one). Detailed results can be found
in Table 18 of Appendix A for experiments with selectivity, and in Tables 19 and 20 of Appendix A
for experiments with the number of MBR tests int the two implementations.

We can notice that the selected autoencoders perform quite well with the estimation of both pa-
rameters and in presence of only synthetic, or both synthetic and real data together. In particular,
convolutional autoencoders seam to better capture the characteristics of both parameters and al-
low to obtain smaller errors when they are used in combination of both kinds of M2 models. With

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:22 A. Belussi et al.

Table 9. M2 for the Number of MBR Tests in Spatial Join when it is Trained with Only Synthetic or

Both Real and Synthetic Data and in Combination with the Spatial Embeddings in Table 4

Algorithm M2 M2 Training Emb. Hyperp. Time (sec) WMAPE BL

SJMR
M2dnn Synth. AEC2 dH4 424 0.3401

0.811
M2cnn Synth. AEC2 cH3 475 0.3907

DJ
M2dnn Synth. AEC2 dH5 107 0.2631

0.37
M2cnn Synth. AEC2 cH3 144 0.2846

SJMR
M2dnn Synth. + Real AES4 dH3 140 0.3379

1.008
M2cnn Synth. + Real AES4 cH3 166 0.3205

DJ
M2dnn Synth. + Real AES4 dH4 119 0.3344

0.39
M2cnn Synth. + Real AES4 cH5 199 0.3645

Hyperparameters for M2dnn are dH3 = 256,128,128,64,64, dH4 = 512,256,256,128,128, and dH5 =

1024,512,512,256,256, while for M2cnn are cH3 = 256,128,128,64, and cH5 = 1024,512,512,256. Time is the amount

of time needed for training in seconds.

reference to selectivity of spatial joins, the use of autoencoders AEC2 and AEC3 allows to obtain
the best results with synthetic data only, or with synthetic and real data together, respectively. In
particular, the error of this last more complicated case (i.e., 0.2125) is even smaller than the best
one obtained in the simpler synthetic case (i.e., 0.2251). A similar behaviour of convolutional au-
toencoders can be observed also in the estimation of the number of MBR tests where smaller errors
are obtained withAEC2 on synthetic data. However, for the more complicated case where also real
data are used AES4 performs slighltly better than the convolutional autoencoders, obtaining an
error of 0.3205 for SJRM and 0.3344 for DJ. The obtained results outperforms the ones obtained
with the BL in terms of the achieved accuracy, and as mentioned before, in terms of performances.
The obtained WMAPE errors are in line with what has been obtained for the estimation of the
range query selectivity when synthetic and real data are considered together, and with self-join
parameters in all the cases. Moreover, the best identified autoencorders for the two parameters of
the binary spatial join are the same of those identified for the self-join in the previous section. All
these considerations confirm the generalization capabilities of spatial embeddings.

5.5 Discussion on Experiment Results

Given the experimental results that we obtained in the previous subsections for both operations,
range query and spatial join, we can observe that:

(1) Spatial embeddings, generated by the trained autoencoders, are able to distill the informa-
tion useful for training successive models which predict parameters for cost evaluation of
spatial operations. Indeed, they behave always better than the considered BLs. Moreover, as
shown in Figure 7, the size of the training set that is needed to obtain a certain accuracy
(misured as the inverse of the WMAPE error) is considerably reduced by the introduction
of the embeddings with respect to the one required when histograms are directly used as
model inputs.

(2) The autoencoder that in average produces the best results is AEC2, which is produced by
a convolutional autoencoder and is the one having the largest LD (3,072). However, also
smaller embeddings, like AES1 or AES4 can produce good results both for estimating range
query and spatial join selectivity.

(3) Considering that we used a limited collection of datasets for training M1 models and a larger
set of data points for training M2 for range query, the training time of the two experiments
are not comparable. However, the set of data points used for training M2 models for self-
join or binary spatial join and M1 were similar in size and also the training time of these

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:23

models is similar, around 100 sec. Training a unique model for estimating the range query
selectivity starting from histograms of datasets requires: (i) a large training set (around 20
Gb for 100,000 range queries) and (ii) almost one day for executing a first try of training, that
did not end. Therefore, the separation between M1 and M2 represents an effective solution
for generating in a reasonable time a tool that is able to predict cost parameters.

(4) The idea that M1 can be trained only once is confirmed by the fact that the same generated
embeddings can be used for estimating two different parameters for three distinct operations,
that is, range query, self-join and binary spatial join, as well as two alternative implementa-
tions of the latter one, SJMR and DJ.

(5) Finally, even if the time required for training and testing the entire pipeline could be very
long, in particular for model M1, this does not affect the applicability of the approach in a
real-world query optimizer. Indeed, the training and test will be performed offline and only
once for M1 and once for each operation for M2. Conversely, a query optimizer is affected
only by the prediction time which takes essentially few milliseconds to execute.

In order to check whether we can further improve the effectiveness of the autoencoders (M1)
in generating spatial embeddings that can be used by a successive model (M2) which predicts
a specific cost parameter, we integrate a previously trained autoencorder in a new model M2,
applying the transfer learning approach, as described in the following subsection.

5.6 Spatial Embeddings vs Transfer Learning

This section illustrates a set of the experiments that check the effect of applying a transfer learning
approach in combination with the spatial embedding generation, instead of using the proposed
two-model-layer architecture. More specifically, given one of the previously trained autoencorders,
namely AEC2, we integrate its encoding layers into a new CNN model M2, denoted as M2cnnT L

with the aim to estimate the selectivity of range queries. In particular, model M2cnnT L is trained
with new sets of data points with increasing size. Each of these sets, called HS(RQbal

σ)i , contains

the histograms of a subset of RQbal
σ (see Section 5.2) as input. Indeed, in this architecture, spatial

embeddings are not used as input of M2, but they are produced by the encoding layers of AEC2

that have been integrated in M2cnnT L . We built the various HS(RQbal
σ)i by considering collection

of data points of cardinality from 485 to 15,474, with a corresponding size from 0.45 GB to 1.22 GB.
Finally, we compare the accuracy obtained by M2cnnT L for eachHS(RQbal

σ)i with the one obtained
by the corresponding model M2cnn that has been trained with the same collection of datasets, but
by substituting their histograms with the corresponding spatial embeddings produced by AEC2.
Clearly, in this case despite to the cardinality of the input set, the training with spatial embedding
substantially reduces the size in bytes, which becomes from 0.01 GB to 0.41 GB, instead from 0.45
GB to 1.22 GB.

The results of the comparison is illustrated in Figure 8 where the accuracy of the two mod-
els is shown in terms of WMAPE error with respect to the cardinality of the training set. Notice
that, the transfer learning approach has a positive effect only when the cardinality of the train-
ing set is lower than 7, 000 data points. Indeed, M2cnnT L performs better than the configuration
M2cnn+AEC2 only for small training sets. Conversely, when a bigger training set can be generated,
the proposed two-layer-model approach, that separates the generation of the spatial embeddings
from the training of M2, produces a better accuracy.

6 CONCLUSION AND FUTURE WORK

In this article, we propose a new approach for exploiting ML and DL techniques in optimization
of spatial queries. In particular, the proposed framework aims at developing a generic model for

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:24 A. Belussi et al.

Fig. 8. Comparison between M2cnnT L and AEC2+M2cnn models, the first trained directly with histograms

and the second with spatial embeddings. The WMAPE error of both models is reported with respect to the

cardinality of the training set.

estimating different cost parameters of several spatial operation implementations. The key idea
is to introduce a two level architecture, where a first model, denoted as M1, is responsible for
generating spatial embeddings of given datasets which are able to distill their relevant features for
the following parameter estimation. Model M1 needs large amount of training datasets to work
properly, but it can be trained only once and this cost can be amortized by the following estimation
models. Indeed, the second level of the proposed framework is composed of several models M2,
one for each spatial operation parameter to be estimated, but since they use as one of their inputs
the spatial embeddings, in place of the original multi-faced histograms, the amount and the size
of the training set can be drastically reduced.

We demonstrate the this idea can be applied successfully for the estimation of selectivity of
range queries and also of selectivity and number of MBR tests of both self-join and binary spatial
join. Experiments showed that the predictions of different parameters can be based on the same
spatial embeddings and that the obtained accuracy is better than the considered BLs. Moreover,
we experimentally show that the use of spatial embeddings drastically reduces the amount and the
size of the training set needed to achieve a particular accuracy. Finally, a comparison with another
ML technique, called transfer learning, is presented which further highlights the advantages of the
proposed framework.

The obtained results are promising in terms of achieved accuracy with respect to the considered
BL methods. They encourage the further investigation in this direction and the testing of the pro-
posed framework with other spatial operation implementations and cost parameters. Moreover,
since many assumptions that have been made consider only outdoor applications, for instance,
relatively to the possible spatial distributions, an interesting future extension would be studying
the applicability and extensibility of the proposed methodology also to indoor scenarios.

APPENDIX

A DETAILED EXPERIMENTAL RESULTS

This appendix reports some detailed results about the performed experiments which have not
been included in the main article for not cluttering the presentation. Section A.1 is related to the
experiments performed about the construction of model M1 which produces the spatial embed-
dings. Section A.2 reports detailed results about the identification of the best model M2 which

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:25

Table 10. Training of the Stacked Autoencoder, with 3 Dense Layers, for Extracting Spatial

Embeddings Starting from Histograms of 128 × 128 × 6

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE WMAPE Selected

time (sec) LOSS REAL autoencoder

latent dimension = 384

512,256 71 9.5E-04 1.3E-03 0.405 55.71 –
1,024,512 105 9.6E-04 1.5E-03 0.363 57.12 AES1

2,048,1024 165 9.6E-04 1.5E-03 0.400 50.57 –

latent dimension = 768

512,256 71 9.0E-04 1.3E-03 0.366 56.81 –
1,024,512 103 9.6E-04 1.6E-03 0.370 58.01 –
2,048,1024 163 1.0E-03 1.4E-03 0.370 50.92 –

latent dimension = 1536

512,256 73 1.2E-03 1.3E-03 0.368 55.85 –
1,024,512 104 1.1E-03 1.6E-03 0.356 54.06 AES2

2,048,1024 164 9.2E-04 1.6E-03 0.423 52.87 –

The training has been performed with 50 epoches and considering only synthetic datasets. Column

WMAPE reports the error obtained by performing the test on synthetic data, while column WMAPE

REAL contains the error for the test performed on real datasets.

estimates the range query selectivity parameter. Section A.3 illustrates detailed results aboth the
M2 models for estimating the selectivity and the number of MBR tests for the self-join. Finally,
Section A.4 contains detailed results about the models M2 built for estimating the selectivity and
the number of MBR tests required by the two considered implementations of the binary spatial
join, respectively.

A.1 Autoencoders

This section reports the detailed results about the four experiments described in Section 5.1 for the
identification of the eight candidate spatial embeddings. In particular, Table 10 reports the detailed
results obtained with a stacked autoencoder trained with only synthetic data. The WMAPE is
computed on a test set covering the 20% of the data points that the model has not seen before.
Moreover, an additional set of data points produced by considering 194 real datasets, from TIGER
and OSM sources, have been used as test set producing the WMAPE REAL shown in the 6th
column. Similarly, Table 11 reports the detailed results obtained with a convolutional autoencoder
trained with only synthetic data and tested on the same synthetic and real datasets considered in
the previous case.

Table 12 reports the detailed results obtained with a stacked autoencoder trained with both real
and synthetic data. The WMAPE is computed on a test set covering the 20% of the data points that
the model has not seen before which includes both synthetic and real datasets, so column WMAPE

REAL is not necessary in this case. Similarly, Table 13 reports the detailed results obtained with
a convolutional autoencoder trained and tested on both real and synthetic data.

A.2 Models Estimating the Selectivity of Range Queries

This section contains the detailed results of the experiments performed to build model M2 which
estimates the selectivity of range queries. As described in Section 5.2, two different architectures
have been tested for this purpose. They differ from the kind of network used to process the input
spatial embeddings and are denoted as M2dnn and M2cnn , respectively.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:26 A. Belussi et al.

Table 11. Training of the Convolutional Autoencoder, with 3 CNN Layers, for Extracting

Spatial Embeddings Starting from Histograms of 128 × 128 × 6

3 CNN layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE WMAPE Selected

time (sec) LOSS REAL autoencoder

latent dimension = 512

filter(32,16) 78 2.8E-03 3.0E-03 0.501 1.82 –
filter(64,32) 87 2.6E-03 2.4E-03 0.486 1.97 –
filter(128,64) 124 2.9E-03 3.0E-03 0.507 1.59 –

latent dimension = 768

filter(32,16) 72 2.6E-03 2.8E-03 0.510 1.67 –
filter(64,32) 80 1.6E-03 1.5E-03 0.421 1.94 –
filter(128,64) 121 1.3E-03 1.3E-03 0.352 1.28 AEC1

latent dimension = 3072

filter(32,16) 73 1.4E-03 1.5E-03 0.386 1.42 –
filter(64,32) 80 9.8E-04 9.9E-04 0.319 1.48 AEC2

filter(128,64) 121 8.4E-04 9.2E-04 0.326 1.25 –

The training has been performed with 50 epoches and considering only synthetic datasets. Column

WMAPE reports the error obtained by performing the test on synthetic data, while column WMAPE REAL

contains the error for the test performed on real datasets.

Table 12. Training of the Stacked Autoencoder, with 3 Dense Layers, for

Extracting Spatial Embeddings Starting from Histograms of 128 × 128 × 6

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE Selected

time (sec) LOSS autoencoder

latent dimension = 48

2048,1024 182 8.8E-04 3.2E-03 5.53 –
1024,512 122 8.2E-04 2.6E-03 5.60 –
512,256 84 8.4E-04 3.5E-03 5.72 –
16,32 53 1.7E-03 2.8E-03 2.84 AES3

latent dimension = 192

2048,1024 182 1.3E-03 3.9E-03 6.52 –
1024,512 123 8.4E-04 3.3E-03 5.12 –
512,256 81 9.6E-04 3.8E-03 5.64 –
16,32 52 1.8E-03 3.3E-03 3.59 –

latent dimension = 384

2048,1024 184 1.3E-03 3.0E-03 5.54 –
1024,512 122 8.4E-04 2.8E-03 5.28 –
512,256 82 9.3E-04 3.5E-03 6.38 –
16,32 51 1.6E-03 2.6E-03 2.42 AES4

The training has been performed with 50 epochs and considering both real and synthetic

datasets.

Table 14 reports the results of the application of M2dnn in combination with various input sets
containing spatial embeddings generated by different autoencoders. In particular, M2 is trained
and tested on: (a) only synthetic data points, in this case a set of 64,000 data points is considered;
or (b) on both real and synthetic data points, in this case 32,000 data points for synthetic data

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:27

Table 13. Training of the Convolutional Autoencoder, with 3 CNN Layers, for

Extracting Spatial Embeddings Starting from Histograms of 128 × 128 × 6

3 dense layers, epochs = 50, histograms = 128 × 128 × 6

Hyperp. Training LOSS VAL WMAPE Selected

time (sec) LOSS autoencoder

latent dimension = 1536

filter(32,16) 93 9.8E-04 9.1E-04 0.59 –
filter(64,32) 100 7.7E-04 8.2E-04 0.59 –
filter(128,64) 143 7.1E-04 7.0E-04 0.51 AEC3

latent dimension = 768

filter(32,16) 89 1.4E-03 1.6E-03 0.60 –
filter(64,32) 98 1.1E-03 1.1E-03 0.54 AEC4

filter(128,64) 144 9.3E-04 9.8E-04 0.55 –

latent dimension = 512

filter(32,16) 88 1.4E-03 1.4E-03 0.60 –
filter(64,32) 95 1.3E-03 1.3E-03 0.63 –
filter(128,64) 144 1.1E-03 1.1E-03 0.64 –

The training has been performed with 50 epochs and considering both real and synthetic

datasets.

Table 14. M2 for Estimation of Selectivity of Range Queries with a Model of Type DNN

Hyperpar. Embedding Baseline

M2 trained and tested on synthetic data

AES1 AES2 AEC1 AEC2 Theoretical
LD = 384 LD = 1536 LD = 768 LD = 3072 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

dH1 0.1701 1,569 0.2038 1,317 0.2001 1,150 0.2268 750

0.691
dH2 0.1120 2,146 0.1268 1,140 0.3409 1,285 0.1088 1,231
dH3 0.0782 2,007 0.1103 989 0.2818 560 0.1554 890
dH4 0.0802 2,145 0.1225 1,360 0.2361 736 0.0934 989
dH5 0.0818 2,114 0.1231 1,077 0.2335 647 0.1312 507

M2 trained and tested on synthetic and real data

AES3 AES4 AEC3 AEC4 Theoretical
LD = 48 LD = 384 LD = 1536 LD = 768 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

dH1 0.2367 1,550 0.3208 1,355 0.3449 1,172 0.3306 407

1.32
dH2 0.2143 1,176 0.2968 682 0.3463 651 0.3423 954
dH3 0.2718 1,698 0.2449 1,497 0.2904 1,044 0.3251 596
dH4 0.2237 1,290 0.2649 1,164 0.3386 829 0.4291 343
dH5 0.2274 1,570 0.3013 571 0.3365 441 0.3047 458

Hyperparameters of column Hyperpar. are as follows: dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256.

are randomly selected from the original 64,000 elements, and additional 32,000 real data points
are added to this set by randomly selecting them from the 33,554 points obtained from the range
queries computed on OSM Lakes and OSM Parks datasets. The results of case (a) are reported in the
first five rows of Table 14, while the results of case (b) are contained in the last five rows of the table.

In Table 14, column Hyperpar. reports the number or nodes in each layer, while column Base-

line reports the error of the BL evaluated with the metrics WMAPE. As BL, we use the theoretical
formula proposed in [4] for estimating the selectivity of range query. Notice that, when M2dnn

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:28 A. Belussi et al.

Table 15. M2 for Estimation of Selectivity of Range Queries with a Model of Type CNN

Hyperpar. Embedding Baseline

M2 trained and tested on synthetic data

AES1 AES2 AEC1 AEC2 Theoretical
LD = 384 LD = 1536 LD = 768 LD = 3072 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

cH1 0.1621 1,101 0.1646 2,208 0,1836 1,874 0.1206 2,018

0.691
cH2 0.1167 2,021 0.1201 2,108 0.1333 1,877 0.1304 2,650
cH3 0.0973 1,150 0.1061 2,222 0.1038 1,877 0.0961 2,350
cH4 0.1062 1,659 0.0948 2,309 0.1005 1,742 0.0894 1,835
cH5 0.0859 2,257 0.1001 2,199 0.1038 1,559 0.0907 3,228

M2 trained and tested on synthetic and real data

AES3 AES4 AEC3 AEC4 Theoretical
LD = 48 LD = 384 LD = 1536 LD = 768 formula [4]

WMAPE sec WMAPE sec WMAPE sec WMAPE sec

cH1 0.2619 1,400 0.3092 936 0.2747 1,641 0.3096 1,119

1.32
cH2 0.2726 2,412 0.2379 2,513 0.2379 2,531 0.2542 2,366
cH3 0.2386 2,492 0.2269 2,530 0.2737 2,851 0.2994 1,540
cH4 0.2071 2,567 0.2007 2,700 0.2332 2,815 0.2453 707
cH5 0.2772 1,542 0.2156 2,159 0.3097 2,820 0.2851 2,788

Hyperparameters of column Hyperpar. are as follows: cH1 = 64,32,32,16, cH2 = 128,64,64,32, cH3 = 256,128,128,64, cH4

= 512,256,256,128, cH5 = 1024,512,512,256.

is tested on synthetic dataset alone, we use only spatial embeddings generated with autoencorder
trained with only synthetic data, that is,AES1,AES2,AEC1, andAEC2. On the contrary, whenM2dnn

is tested also on real datasets, then we use the autoencoders trained also with real data, that is,AES3,
AES4, AEC3, and AEC4. For each considered autoencoder, its LD is also reported.

Similarly, Table 15 reports the results of the application of M2cnn in combination with various
input sets containing spatial embeddings generated by different autoencoders. As in the previous
case, M2cnn is initially trained and tested on only synthetic data and then on both synthetic and
real data. The same considerations made above for the choice of the autoencoder in the various
cases hold also here.

A.3 Models Estimating the Selectivity and Number of MBR Tests of Self-join

This section reports the detailed results of the experiments performed to build the two models M2
which are used to estimate the selectivity and the number of MBR tests of the self-join, respec-
tively. In this case, only 4 autoencoders are considered, the ones that perform better in the various
configurations identified in the previous experiments done for the range query selectivity. In par-
ticular, given the two considered architectures described in Section 5.3 and denoted as M2dnn and
M2cnn , we consider for each of them a stacked and a convolutional autoencoder.

Table 16 report the results of training and testing the two modelsM2dnn andM2cnn for the selec-
tivity estimation of the self-join with both synthetic datasets only, and synthetic and real datasets
together. In particular, the input set of these models is represented by the spatial embeddings gen-
erated by the stacked autoencoder AES1 or the convolutional autoencoder AEC2 in the first case,
and the stacked autoencoder AES4 or the convolutional autoencoder AEC3 in the second case . For
each of these cases, we report both the error obtained during the estimation of the spatial join selec-
tivity (i.e., column WMAPE) and the required training time in seconds. Various hyperparameter
configurations are considered and the best obtained results are highlighted in bold.

Finally, Table 17 reports the estimation errors for M2dnn and M2cnn when they are trained
and tested on both synthetic data only, and synthetic and real datasets togehter, with the aim to

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:29

Table 16. M2 for Estimating the Self-join Selectivity for Both Synthetic Datasets Only,

and Synthetic and Real Dataset Together

Net. Hyper Synthetic data Synthetic and real data

arch. par. AES1 AEC2 BL AES4 AEC3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

M2dnn

dH1 0.3079 135 0.2974 75

0.69

0.4135 154 0.6954 53

2.0
dH2 0.3261 135 0.2217 93 0.3958 153 0.6738 36
dH3 0.2646 134 0.2138 198 0.4078 154 0.5959 154
dH4 0.2789 138 0.2495 141 0.3847 158 0.6061 105
dH5 0.2806 141 0.2761 98 0.3557 160 0.5876 159

M2cnn

cH1 0.3519 139 0.2727 76

0.69

0.4178 194 0.4562 196

2.0
cH2 0.3144 139 0.2666 138 0.4095 194 0.7788 39
cH3 0.3006 136 0.2252 124 0.3694 213 0.3345 199
cH4 0.3059 139 0.2211 128 0.3397 216 0.3163 229
cH5 0.3096 144 0.2533 101 0.3691 236 0.3010 233

Hyperparameters of column Hyperpar. are for M2dnn are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for M2cnn are cH1 = 64,32,32,16, cH2

= 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training

time in seconds.

Table 17. M2 for Estimating the Number of MBR Tests for the Self-join for Both Synthetic Datasets

Only, and Synthetic with Real Datasets Together

Net. Hyper Synthetic data Synthetic and real data

arch. par. AES1 AEC2 BL AES4 AEC3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

M2dnn

dH1 0.4547 109 0.4562 77

0.96

0.4588 133 0.5199 136

0.96
dH2 0.3904 124 0.3908 90 0.4452 134 0.7129 30
dH3 0.3947 124 0.3399 138 0.4538 133 0.4795 119
dH4 0.4135 128 0.3128 139 0.4946 136 0.6773 124
dH5 0.4093 153 0.3231 109 0.5129 140 0.5262 142

M2cnn

cH1 0.4973 138 0.5057 110

0.96

0.5578 110 0.3983 173

0.96
cH2 0.4097 158 0.3029 182 0.4452 169 0.3517 171
cH3 0.4136 174 0.3624 147 0.4327 187 0.3001 174
cH4 0.3971 175 0.3232 184 0.4266 191 0.3403 202
cH5 0.3932 191 0.3566 182 0.4255 207 0.3724 206

Hyperparameters of column Hyperpar. for M2dnn are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for M2cnn are cH1 = 64,32,32,16, cH2

= 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training

time in seconds.

estimate the number of MBR tests performed during the self-join. In particular, as in the for the
selectivity estimation the input embeddings are produced by using autoencoders AES1 and AEC2

in the first case, and AES4 and AEC3 in the second one.

A.4 Models Estimating the Selectivity and Number of MBR Tests of Binary Spatial Join

This section reports the detailed results of the experiments performed to build the models M2
which are used to estimate the selectivity and the number of MBR tests of the binary spatial join,
respectively. As in the previous case only four autoencoders are considered, the ones that perform
better in the experiments done for the range query selectivity. In particular, given the two consid-
ered architectures described in Section 5.4 and denoted as M2dnn and M2cnn , we consider for each
of them a stacked and a convolutional autoencoder.

Table 18 report the results of training and testing the two models M2dnn and M2cnn for the
estimation of binary spatial join selectivity, when we use synthetic datasets only, or synthetic and

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

36:30 A. Belussi et al.

Table 18. M2 for Estimating the Binary Spatial Join Selectivity for Both Synthetic Datasets Only, and

Synthetic and Real Datasets Together

Net. Hyper Synthetic data Synthetic and real data

arch. par. AES1 AEC2 BL AES4 AEC3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

M2dnn

dH1 0.3024 403 0.2862 441

0.7274

0.2636 131 0.4502 132

0.8424
dH2 0.2794 406 0.2507 408 0.2863 126 0.2683 95
dH3 0.2495 401 0.2555 409 0.3096 131 0.4507 101
dH4 0.2409 411 0.2865 420 0.2832 75 0.3993 134
dH5 0.2431 432 0.2251 431 0.2795 135 0.4217 142

M2cnn

cH1 0.3490 341 0.3122 518

0.7274

0.3459 126 0.3639 127

0.8424
cH2 0.3184 481 0.2859 551 0.2665 157 0.2637 174
cH3 0.3101 483 0.2811 575 0.2302 155 0.2171 163
cH4 0.3115 510 0.2810 550 0.2521 149 0.2255 174
cH5 0.3035 522 0.2907 588 0.2502 168 0.2125 175

Hyperparameters of column Hyperpar. for M2dnn are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for M2cnn are cH1 = 64,32,32,16, cH2

= 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training

time in seconds.

Table 19. M2 for Estimating the Number of MBR Tests for the SJMR Implementation of the Binary

Spatial Join Trained with Both Synthetic Datasets Only, and Synthetic with and Real Datasets Together

Net. Hyper Synthetic data Synthetic and real data

arch. par. AES1 AEC2 BL AES4 AEC3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

M2dnn

dH1 0.4032 407 0.8587 54

0.8115

0.3681 140 0.6719 143

1.0085
dH2 0.3904 403 0.3897 407 0.4275 111 0.4937 87
dH3 0.4137 408 0.3672 419 0.3379 140 0.7307 123
dH4 0.3477 418 0.3401 424 0.4321 124 0.6962 147
dH5 0.4045 365 0.3533 405 0.4559 108 0.6843 132

M2cnn

cH1 0.8556 98 0.4540 520

0.8115

0.3626 164 0.5321 168

1.0085
cH2 0.8567 97 0.4100 547 0.3784 166 0.5141 177
cH3 0.4587 485 0.3907 465 0.3205 166 0.4819 191
cH4 0.4427 514 0.4140 538 0.3223 169 0.3696 189
cH5 0.4722 496 0.4564 571 0.3261 153 0.3307 190

Hyperparameters of column Hyperpar. are for M2dnn are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for M2cnn are cH1 = 64,32,32,16, cH2

= 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training

time in seconds.

real data together. In particular, the input set of these models is in the first case represented by the
spatial embeddings generated by the stacked autoencoder AES1 or the convolutional autoencoder
AEC2, while in the second case it is represented by the embeddings generated by AES4 and AEC3,
respectively . For each of these cases, we report both the error obtained during the estimation and
the time required by the training. Various hyperparameter configurations are considered and the
best obtained results are highlighted in bold.

Table 19 reports the estimation errors forM2dnn and M2cnn when they are trained and tested on
both synthetic datasets only, and synthetic and real datasets together with the aim to estimate the
number of MBR tests for the SJMR implementation of the binary spatial join. In particular, in this
case the input embeddings are produced by using autoencoders AES1 and AEC2 in the first case,
and by AES4 and AEC3 in the second one. In a similar way, Table 20 reports the same result but
for the estimation of the number of MBR tests performed by the DJ implementation of the binary
spatial join.

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

A Generic Machine Learning Model for Spatial Query Optimization 36:31

Table 20. M2 for Estimating the Number of MBR Tests for the DJ Implementation of the Binary

Spatial Join Trained with Both Synthetic Datasets Only, and Synthetic with and Real Datasets Together

Net. Hyper Synthetic data Synthetic and real data

arch. par. AES1 AEC2 BL AES4 AEC3 BL

WMAPE Time WMAPE Time WMAPE Time WMAPE Time

M2dnn

dH1 0.3768 99 0.2917 93

0.37

0.4119 134 0.4543 101

0.39
dH2 0.3381 97 0.2767 96 0.3429 116 0.4265 119
dH3 0.2953 142 0.2723 99 0.3478 1 17 0.4197 119
dH4 0.2985 98 0.2696 99 0.3344 119 0.4234 122
dH5 0.3012 99 0.2631 107 0.3391 120 0.4058 124

M2cnn

cH1 0.3681 117 0.2998 143

0.37

0.4063 144 0.4063 203

0.39
cH2 0.3556 119 0.2979 143 0.3765 143 0.4334 144
cH3 0.3543 129 0.2846 144 0.3884 160 0.3904 177
cH4 0.3382 136 0.2909 154 0.3699 164 0.3822 171
H5 0.3485 127 0.2887 263 0.3645 199 0.4222 231

Hyperparameters of column Hyperpar. are for M2dnn are dH1 = 64,32,32,16,16, dH2 = 128,64,64,32,32, dH3 =

256,128,128,64,64, dH4 = 512,256,256,128,128, dH5 = 1024,512,512,256,256. While for M2cnn are cH1 = 64,32,32,16, cH2

= 128,64,64,32, cH3 = 256,128,128,64, cH4 = 512,256,256,128, cH5 = 1024,512,512,256. Column Time reports the training

time in seconds.

ACKNOWLEDGMENTS

This work is supported in-part by the National Science Foundation under grants, IIS-1838222, CNS-
1924694, IIS-1954644, and IIS-2046236.

REFERENCES

[1] Ildar Absalyamov, Michael J. Carey, and Vassilis J. Tsotras. 2018. Lightweight cardinality estimation in LSM-based

systems. In Proceedings of the 2018 International Conference on Management of Data. Association for Computing

Machinery, 841–855. DOI:https://doi.org/10.1145/3183713.3183761

[2] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad Ouzzani, Hazem Elmeleegy, and

Thamir Qadah. 2015. AQWA: Adaptive query workload aware partitioning of big spatial data. Proceedings of the

VLDB Endowment 8, 13 (2015), 2062–2073. DOI:https://doi.org/10.14778/2831360.2831361

[3] W. Aref and H. Samet. 1994. A cost model for query optimization using R-Trees. In Proceedings of the Second ACM

Workshop on Advances in Geographic Information Systems, ACM-GIS. ACM, 60–67.

[4] Walid G. Aref and Hanan Samet. 1993. Estimating selectivity factors of spatial operations. In Proceedings of the 5th

Workshop on Foundations of Models and Languages for Data and Object (Informatik-Berichte des IfI, Vol. 93/9), Andreas

Heuer and Marc H. Scholl (Eds.). 31–43.

[5] Alberto Belussi and Christos Faloutsos. 1998. Self-spacial join selectivity estimation using fractal concepts. ACM

Transactions on Information Systems 16, 2 (1998), 161–201. DOI:https://doi.org/10.1145/279339.279342

[6] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2018. Detecting skewness of big spatial data in SpatialHadoop.

In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.

432–435. DOI:https://doi.org/10.1145/3274895.3274923

[7] A. Belussi, S. Migliorini, and A. Eldawy. 2020. Cost estimation of spatial join in SpatialHadoop. GeoInformatica 24,

4 (2020), 1021–1059. DOI:https://doi.org/10.1007/s10707-020-00414-x

[8] Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2022. Spatial embedding: A generic machine learning model for

spatial query optimization. In Proceedings of the 30th International Conference on Advances in Geographic Information

Systems. Association for Computing Machinery. DOI:https://doi.org/10.1145/3557915.3560960

[9] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A multidimensional workload-aware histogram.

In Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. Association for Computing

Machinery, 211–222. DOI:https://doi.org/10.1145/375663.375686

[10] Ahmed Eldawy et al. 2021. Beast: Scalable exploratory analytics on spatio-temporal data. In Proceedings of the 30th

ACM International Conference on Information & Knowledge Management. ACM, 3796–3807. DOI:https://doi.org/10.

1145/3459637.3481897

[11] A. Eldawy and M. F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for spatial data. In Proceedings of the 2015

IEEE 31st International Conference on Data Engineering. 1352–1363. DOI:https://doi.org/10.1109/ICDE.2015.7113382

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://doi.org/10.1145/3183713.3183761
https://doi.org/10.14778/2831360.2831361
https://doi.org/10.1145/279339.279342
https://doi.org/10.1145/3274895.3274923
https://doi.org/10.1007/s10707-020-00414-x
https://doi.org/10.1145/3557915.3560960
https://doi.org/10.1145/375663.375686
https://doi.org/10.1145/3459637.3481897
https://doi.org/10.1109/ICDE.2015.7113382

36:32 A. Belussi et al.

[12] Christos Faloutsos, Bernhard Seeger, Agma Traina, and Caetano Traina. 2000. Spatial join selectivity using power

laws. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Association for

Computing Machinery, 177–188. DOI:https://doi.org/10.1145/342009.335412

[13] Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. 2019. Efficient region embedding with multi-view spatial

networks: A perspective of locality-constrained spatial autocorrelations. In Proceedings of the 33rd AAAI Conference

on Artificial Intelligence and 31st Innovative Applications of Artificial Intelligence Conference and 9th AAAI Symposium

on Educational Advances in Artificial Intelligence (AAAI’19/IAAI’19/EAAI’19). Article 112, 8 pages. DOI:https://doi.

org/10.1609/aaai.v33i01.3301906

[14] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and Gautam Das. 2020. Deep learning

models for selectivity estimation of multi-attribute queries. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data. 1035–1050. DOI:https://doi.org/10.1145/3318464.3389741

[15] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.

DeepDB: Learn from data, not from queries! Proceedings of the VLDB Endowment 13, 7 (2020), 992–1005. DOI:https://

doi.org/10.14778/3384345.3384349

[16] G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313,

5786 (2006), 504–507. DOI:https://doi.org/10.1126/science.1127647

[17] Porter Jenkins, Ahmad Farag, Suhang Wang, and Zhenhui Li. 2019. Unsupervised representation learning of spa-

tial data via multimodal embedding. In Proceedings of the 28th ACM International Conference on Information and

Knowledge Management. 1993–2002. DOI:https://doi.org/10.1145/3357384.3358001

[18] Puloma Katiyar, Tin Vu, Sara Migliorini, Alberto Belussi, and Ahmed Eldawy. 2020. SpiderWeb: A spatial data gener-

ator on the web. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems.

465–468. DOI:https://doi.org/10.1145/3397536.3422351

[19] Jin-Deog Kim and Bonghee Hong. 2000. Parallel spatial joins using grid files. In Proceedings of the 7th International

Conference on Parallel and Distributed Systems, ICPADS. IEEE Computer Society, 531–536. DOI:https://doi.org/10.

1109/ICPADS.2000.857739

[20] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned cardi-

nalities: Estimating correlated joins with deep learning. In Proceedings of the Conference on Innovative Data Systems

Research. Retrieved from http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[21] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica. 2019. Learning to optimize join

queries with deep reinforcement learning. Retrieved from http://arxiv.org/abs/1808.03196

[22] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. 2016. Autoencoding beyond

pixels using a learned similarity metric. In Proceedings of the 33rd International Conference on International Conference

on Machine Learning. JMLR.org, 1558–1566.

[23] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Learn-

ing to steer query optimizers. In Proceedings of the 2021 International Conference on Management of Data. 1275–1288.

DOI:https://doi.org/10.1145/3448016.3452838

[24] Ryan Marcus and Olga Papaemmanouil. 2018. Deep reinforcement learning for join order enumeration. In Proceed-

ings of the 1st International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. ACM,

3:1–3:4. DOI:https://doi.org/10.1145/3211954.3211957

[25] Ryan C. Marcus et al. 2019. Neo: A learned query optimizer. Proceedings of the VLDB Endowment 12, 11 (2019),

1705–1718. DOI:https://doi.org/10.14778/3342263.3342644

[26] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based histograms for selectivity estimation. SIGMOD

Record 27, 2 (1998), 448–459. DOI:https://doi.org/10.1145/276305.276344

[27] Sara Migliorini, Alberto Belussi, Mauro Negri, and Giuseppe Pelagatti. 2016. Towards massive spatial data validation

with SpatialHadoop. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial

Data. 18–27. DOI:https://doi.org/10.1145/3006386.3006392

[28] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in

vector space. In 1st International Conference on Learning Representations, ICLR. Retrieved from http://arxiv.org/abs/

1301.3781

[29] Jignesh M. Patel and David J. DeWitt. 1996. Partition based spatial-merge join. SIGMOD Record 25, 2 (1996), 259–270.

DOI:https://doi.org/10.1145/235968.233338

[30] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. 1996. Improved histograms for selectiv-

ity estimation of range predicates. SIGMOD Record 25, 2 (1996), 294–305. DOI:https://doi.org/10.1145/235968.233342

[31] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce. In Proceedings of the 25th International

Conference on Advances in Geographic Information Systems. Article 21, 10 pages. DOI:https://doi.org/10.1145/3139958.

3139967

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://doi.org/10.1145/342009.335412
https://doi.org/10.1609/aaai.v33i01.3301906
https://doi.org/10.1145/3318464.3389741
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1126/science.1127647
https://doi.org/10.1145/3357384.3358001
https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1109/ICPADS.2000.857739
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://arxiv.org/abs/1808.03196
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/276305.276344
https://doi.org/10.1145/3006386.3006392
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/235968.233338
https://doi.org/10.1145/235968.233342
https://doi.org/10.1145/3139958.3139967

A Generic Machine Learning Model for Spatial Query Optimization 36:33

[32] Samriddhi Singla and Ahmed Eldawy. 2022. Flexible computation of multidimensional histograms. In Proceedings of

the Spatial Gems, Volume 1 (1 ed.). Association for Computing Machinery, 119–130.

[33] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2020. Using deep learning for big spatial data partition-

ing. ACM Transactions on Spatial Algorithms and Systems 7, 1 (2020), 3:1–3:37. DOI:https://doi.org/10.1145/3402126

[34] Tin Vu, Alberto Belussi, Sara Migliorini, and Ahmed Eldawy. 2021. A learned query optimizer for spatial join. In

Proceedings of the 29th International Conference on Advances in Geographic Information Systems. Association for Com-

puting Machinery, New York, NY, USA, 458–467. DOI:https://doi.org/10.1145/3474717.3484217

[35] Tin Vu and Ahmed Eldawy. 2018. R-Grove: Growing a family of R-trees in the big-data forest. In Proceedings of

the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Association for

Computing Machinery, 532–535. DOI:https://doi.org/10.1145/3274895.3274984

[36] Tin Vu, Sara Migliorini, Ahmed Eldawy, and Alberto Belussi. 2022. Spatial data generators. In Spatial Gems, Volume

1 (1 ed.). Association for Computing Machinery, New York, NY, USA, 13–24. DOI:https://doi.org/10.1145/3548732.

3548736

[37] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. 2020. NeuroCard: One

cardinality estimator for all tables. Proceedings of the VLDB Endowment 14, 1 (2020), 61–73. DOI:https://doi.org/10.

14778/3421424.3421432

[38] J. Yu, J. Wu, and M. Sarwat. 2015. GeoSpark: A cluster computing framework for processing large-scale spatial

data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems.

70:1–70:4. DOI:https://doi.org/10.1145/2820783.2820860

[39] Wenchao Yu, Guangxiang Zeng, Ping Luo, Fuzhen Zhuang, Qing He, and Zhongzhi Shi. 2013. Embedding with

autoencoder regularization. In Proceedings of the Machine Learning and Knowledge Discovery in Databases. Springer

Berlin Heidelberg, 208–223.

[40] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009. SJMR: Parallelizing spatial join with

MapReduce on clusters. In Proceedings of the CLUSTER. IEEE Computer Society, New Orleans, LA, 1–8. DOI:https://

doi.org/10.1109/CLUSTR.2009.5289178

Received 15 March 2023; revised 9 December 2023; accepted 4 April 2024

ACM Trans. Spatial Algorithms Syst., Vol. 10, No. 4, Article 36. Publication date: October 2024.

https://doi.org/10.1145/3402126
https://doi.org/10.1145/3474717.3484217
https://doi.org/10.1145/3274895.3274984
https://doi.org/10.1145/3548732.3548736
https://doi.org/10.14778/3421424.3421432
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1109/CLUSTR.2009.5289178

