Physical inactivity is considered a significant risk factor for mortality and morbidity among chronic hemodialysis (HD) patients. Therefore, physical exercise is recommended in the treatment of HD patients. Although the beneficial effects of physical exercise in HD patients are well-described in the literature, the underlying physiological mechanisms still need to be fully understood. Recently, microRNAs (miRNAs) have emerged as potential mediators of the therapeutic effects of physical exercise in healthy individuals. miRNAs are short, single-stranded, noncoding RNAs involved in gene expression regulation. Specifically, upon forming the RNA-induced silencing complex, miRNAs selectively bind to specific miRNAs within cells, reducing gene expression. miRNAs can be secreted by cells in an accessible form or enclosed within exosomes or extracellular vesicles. They can be detected in various body fluids, including serum (circulating miRNAs), facilitating the study of their diverse expression. Currently, there is no available data regarding the impact of physical exercise on the expression of miRNAs involved in osteogenic differentiation, a fundamental mechanism in the development of vascular calcification, for HD patients. Therefore, we have designed an observational and longitudinal case-control study to evaluate the expression of miR-9 and miR-30b in HD patients participating in a 3-month interdialytic physical exercise program. This paper aims to present the study protocol and review the expression of circulating miRNAs in HD patients and their modulation through physical exercise.

The impact of physical exercise on microRNAs in hemodialysis patients: a review and a protocol for an ancillary study

Elia, Rossella;Bulighin, Francesca;Gambaro, Giovanni;Salvagno, Gian Luca;Carbonare, Luca Giuseppe Dalle;Valenti, Maria Teresa;Battaglia, Yuri
2024-01-01

Abstract

Physical inactivity is considered a significant risk factor for mortality and morbidity among chronic hemodialysis (HD) patients. Therefore, physical exercise is recommended in the treatment of HD patients. Although the beneficial effects of physical exercise in HD patients are well-described in the literature, the underlying physiological mechanisms still need to be fully understood. Recently, microRNAs (miRNAs) have emerged as potential mediators of the therapeutic effects of physical exercise in healthy individuals. miRNAs are short, single-stranded, noncoding RNAs involved in gene expression regulation. Specifically, upon forming the RNA-induced silencing complex, miRNAs selectively bind to specific miRNAs within cells, reducing gene expression. miRNAs can be secreted by cells in an accessible form or enclosed within exosomes or extracellular vesicles. They can be detected in various body fluids, including serum (circulating miRNAs), facilitating the study of their diverse expression. Currently, there is no available data regarding the impact of physical exercise on the expression of miRNAs involved in osteogenic differentiation, a fundamental mechanism in the development of vascular calcification, for HD patients. Therefore, we have designed an observational and longitudinal case-control study to evaluate the expression of miR-9 and miR-30b in HD patients participating in a 3-month interdialytic physical exercise program. This paper aims to present the study protocol and review the expression of circulating miRNAs in HD patients and their modulation through physical exercise.
2024
chondrogenesis
endothelial dysfunction
endothelial progenitor cells
exercise therapy
osteogenesis
physical activity
vascular calcification
File in questo prodotto:
File Dimensione Formato  
biomedicines-12-00468.pdf

accesso aperto

Descrizione: CC BY 4.0 publisher version
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 608.81 kB
Formato Adobe PDF
608.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1121066
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact