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Abstract: Physical inactivity is considered a significant risk factor for mortality and morbidity among
chronic hemodialysis (HD) patients. Therefore, physical exercise is recommended in the treatment of
HD patients. Although the beneficial effects of physical exercise in HD patients are well-described in
the literature, the underlying physiological mechanisms still need to be fully understood. Recently,
microRNAs (miRNAs) have emerged as potential mediators of the therapeutic effects of physical
exercise in healthy individuals. miRNAs are short, single-stranded, noncoding RNAs involved in
gene expression regulation. Specifically, upon forming the RNA-induced silencing complex, miRNAs
selectively bind to specific miRNAs within cells, reducing gene expression. miRNAs can be secreted
by cells in an accessible form or enclosed within exosomes or extracellular vesicles. They can be
detected in various body fluids, including serum (circulating miRNAs), facilitating the study of their
diverse expression. Currently, there is no available data regarding the impact of physical exercise on
the expression of miRNAs involved in osteogenic differentiation, a fundamental mechanism in the
development of vascular calcification, for HD patients. Therefore, we have designed an observational
and longitudinal case-control study to evaluate the expression of miR-9 and miR-30b in HD patients
participating in a 3-month interdialytic physical exercise program. This paper aims to present the
study protocol and review the expression of circulating miRNAs in HD patients and their modulation
through physical exercise.

Keywords: physical activity; chondrogenesis; osteogenesis; vascular calcification; endothelial
progenitor cells; endothelial dysfunction; exercise therapy

1. Introduction

Extracorporeal hemodialysis (HD) is the most common kidney replacement therapy
for patients with end-stage kidney disease (ESKD) [1,2]. Despite the use of efficacious drugs
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and highly efficient dialysis, patients undergoing maintenance HD have a high mortality
rate compared to the general population [3].

Because sedentary behaviour is considered one of the factors contributing to mortality
and unfavourable clinical outcomes in HD patients, physical exercise has been recom-
mended [4,5] and successfully implemented in several clinical trials [6,7]. Over the past few
years, encouraging clinical results [8] have been published regarding the improvements in-
duced by physical exercise in chronic kidney disease (CKD) complications, including bone
mineral disorders, inflammation, and sarcopenia [9]. However, the pathophysiological
mechanisms underlying exercise and cellular targets still need to be completed [10].

Recently, a significant body of literature supports small noncoding RNAs as pos-
sible mediators of the therapeutic effects of physical exercise [11]. Their discovery has
become feasible due to advancements in transcriptomic technology and high-throughput
analysis. The main classes of small noncoding RNAs are microRNAs (miRNAs), small
interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs). Despite their distinct
biogenesis, these three short pieces of single-stranded RNA have a similar action mech-
anism involving RNA–RNA base-pairing, which generally reduces post-transcriptional
gene regulation [12,13].

Among the various noncoding RNAs, miRNAs (~22 nucleotide length) are particularly
interesting due to their involvement in post-transcriptional regulation and their potential
to be utilized as biomarkers. In particular, miRNAs have surfaced as novel regulators of
biological processes across nearly all organ systems, and a growing body of research is
establishing connections between disrupted miRNA function and various disease mecha-
nisms. However, the utility of miRNAs as therapeutic biomarkers for assessing the impact
of physical exercise on HD patients is still debated [14–18]. Therefore, this review discusses
the modulation of circulating miRNAs in CKD patients on dialysis treatment who engage
in physical exercise. Additionally, we describe our planned case-control study protocol,
which will assess the expression of two circulating miRNAs in HD subjects undergoing
interdialytic physical exercise training compared to controls.

2. Search Strategy and Selection Criteria

We searched the PubMed, Web of Science, Scopus, and Google Scholar databases for
articles published from their inception to 31 July 2023. We used the following search terms:
“chronic kidney disease”, “end-stage kidney disease”, “end-stage renal disease”, “kidney
failure”, “renal replacement therapy”, “dialysis”, “hemodialysis”, “microRNA”, “exercise”,
and “physical activity”. We primarily included articles published in the English language.

3. MicroRNA

Over 1000 different miRNAs are synthesized from the human genome, and they can
modulate one-third of human protein-coding genes [19]. The biogenesis of microRNAs
involves an initial transcription by polymerase II (Pol II) to form primary-microRNA
(pri-miRNA) transcripts, which are then processed by Drosha to generate pre-miRNAs.
Exportin 5 (EXPO5) facilitates the export of pre-miRNAs from the nucleus to the cytoplasm.
The Dicer complex is recruited to pre-miRNAs to excise the stem-loop, forming mature
miRNAs, where one strand of the miRNA duplex is incorporated into the RNA-induced
silencing complex (RISC) [20] (Figure 1).

Once formed, the RISC seeks out its target mRNAs by searching for complementary
nucleotide sequences. The Argonaute protein, a component of RISC, holds the 5′ region of
the miRNA to optimize its positioning for base-pairing with another RNA molecule. In
animals, base-pairing typically involves at least seven nucleotide pairs and occurs most
often in the 3′UTR of the target mRNA [21]. Once a miRNA binds an mRNA, several
outcomes are possible. If the base-pairing is extensive, the Argonaute protein cleaves the
mRNA, removing its poly-A tail and exposing it to exonucleases. After cleavage, the RISC
complex and its associated miRNA are released to seek additional mRNAs [22].
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Figure 1. The figure illustrates the biogenesis of microRNAs, which begins with forming primary
microRNA transcripts (pri-miRNA) and is subsequently processed by Drosha to generate pre-miRNA.
Once exported to the cytoplasm, the Dicer complex is recruited to remove the stem-loop from pre-
miRNA, forming mature miRNA. One strand of the miRNA duplex is then incorporated into the
RNA-induced silencing complex (RISC). Within the RISC, miRNAs bind to complementary sequences
on target mRNAs, leading to the repression of their translation or the induction of their degradation.
However, cells can also secrete miRNAs and release them into circulation, contributing to cellular
crosstalk and epithelial–mesenchymal transition, angiogenesis, fibrosis, inflammation, and osteogenic
differentiation. Specifically, some of the miRNAs whose levels increase following physical activity
are highlighted.

The regulatory mechanism of miRNAs is similar to that of other RNAs, such as
transcriptional activation or inhibition, epigenetic repression, and degradation. Intronic
RNAs are often regulated by their host gene and processed from the intron, but they may
also have an independent promoter region [22]. Multiple factors can account for the stability
of microRNAs. The half-life of miRNAs can persist for five days or longer; however, some
miRNAs have a rapid turnover [23].

The distinct miRNA expression profiles observed between normal and diseased tissues
can serve as valuable diagnostic biomarkers [24]. MicroRNAs, whether released by cells
in their free form or enclosed within vesicles, remain stable in bodily fluids, presenting a
less invasive and more readily accessible alternative to biopsies [25]. MicroRNA has been
isolated from saliva, blood (serum and plasma), faeces, urine, synovial fluid, follicular
fluid, and pancreatic juice, and it is being examined for its utility as a biomarker for related
diseases [26].

4. miRNAs in Chronic Kidney Disease

Some miRNAs have been recognized as potential biomarkers for enhancing diagnostic
accuracy, predicting prognosis, and monitoring the course of kidney disease. In a recent
study aiming to identify potential CKD biomarkers, miR-21, miR-17, and miR-150, three
circulating miRNAs, were strongly associated with CKD in the Japanese population [27].

Furthermore, miRNAs are involved in various processes, including epithelial–mesenchymal
transition (EMT), fibrosis, inflammation, and the activation of renal stem cells [28]. For
instance, miR-155-5p has been implicated in promoting renal fibrosis under hypoxic con-
ditions. It is transcriptionally regulated by p53 and regulates the cell cycle, cell growth,
differentiation, and apoptosis. Upregulation of miR-155-5p may inhibit Sirt1, activate p53,
and establish a positive feedback loop [29].
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Studies have shown that exosomal miR-21 derived from tubular epithelial cells
may accelerate the development of renal fibrosis by activating fibroblasts via the miR-
21/PTEN/Akt pathway in obstructed kidneys [30]. Additionally, the expression of MiR-
146a in the kidneys and its urinary excretion specifically correlates with the development
of interstitial lesions and inflammatory cell infiltration [31].

The expression of other miRNAs, such as miR-16-5p, miR-17, miR-20a, and miR-
106b-5p, decreases in small extracellular vesicles from CKD patients as kidney function
deteriorates. Transfection of vascular smooth muscle cells (VSMCs) with each miRNA-
mimic has been shown to mitigate calcification [32].

Recent studies have also indicated that specific miRNAs, namely miR-143, miR-145,
and miR-223, can be increased in patients with CKD stages III-V and those treated with
hemodialysis, while they decrease in renal transplant recipients [33]. Regarding miR-143
and miR-145, it is interesting to note that they play a role in vascular cell biology and are
associated with CV disease [33]. So, it is not unexpected to find that they are dysregulated
in a high-CV-risk condition, such as CKD. miR-223, a modulator of hematopoietic lineage
differentiation involved in inflammatory and metabolic disorders, may contribute to the
progression of chronic renal disease. Anglicheau et al. found elevated miRNA-223 levels in
renal biopsies of patients with chronic progressive renal failure compared to patients with
stable CKD [34].

5. miRNAs in CKD-Related Sarcopenia

Numerous investigations have focused on understanding the roles of miRNAs and
long noncoding RNAs (lncRNAs) in skeletal muscle biology and the development of
sarcopenia [35]. This degenerative process develops with age and is characterized by a loss
of muscle mass and function.

Age-related sarcopenia is a consequence of altered target gene expression, which
is influenced by the downregulation of various miRNAs and lncRNAs associated with
muscle development and the upregulation of those linked to muscle atrophy. Specifically,
activating the transforming growth factor-β (TGF-β) signalling pathway exacerbates sar-
copenia while activating the insulin-like growth factor 1 (IGF-1) signalling system, the
bone morphogenetic protein (BMP) signalling pathway, and the myogenic regulatory factor
(MRF)-related signalling pathway alleviates it [36].

In patients with ESKD, especially those undergoing HD treatments, sarcopenia was
found to increase the likelihood of adverse outcomes, including disability, metabolic
dysfunction, reduced quality of life, and even mortality [9,37]. Changes in the expression
levels of miRNAs and lncRNAs, which control several signalling pathways, contribute to
muscle atrophy and sarcopenia [36,38] by either increasing protein degradation [39,40] or
impairing myogenesis [41] in CKD settings.

MRFs, encompassing myogenic differentiation D (MyoD), myogenic factor 5 (Myf5),
myogenin, and myogenic regulatory factor 4 (MRF4), play a crucial role in the process
of skeletal myogenesis. When MyoD is not expressed, satellite cells exhibit enhanced
expression of the paired box transcription factor (Pax7) while remaining dormant. MyoD
and Myf5 facilitate the activation of satellite cells from their quiescent condition [42].
One particularly noteworthy subset of miRNA in skeletal muscle is myomiRs. Exosomal
vesicles permit the production and transport of myomiRs. These miRNAs travel through
the bloodstream as communicators and regulators in nearby muscle tissue and fat cells.
myomiRs can regulate skeletal muscle plasticity by coordinating changes in muscle mass
and fibre type in response to various contractile activities. Specifically, myomiRs are
linked to the formation and maintenance of muscle mass in response to physical activity,
the differentiation of satellite cells, the maintenance of physiological tropism, and the
regulation of fibre switching. A group of miRNAs, including miR-23a, miR-26a, miR-29,
miR-182, and miR-27a, acts as a potent regulator of muscle growth through the forkhead
box protein O1 (FOXO1) pathway, phosphatase and tensin homolog (PTEN) genes and
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translational regulation, SMAD-2/3, and myostatin signalling [43–45]. These miRNAs are
downregulated, enhancing protein degradation [39–41].

Additionally, malnutrition is associated with sarcopenia through the effect of miR-
NAs [46]. For instance, in plasma from sarcopenic patients with poor nutritional status, the
downregulation of miR-206, which promotes myoblast differentiation by downregulating
Pax7, has been observed. The regulation of miR-206, which depends on nutrient availability,
may influence age-related muscle degeneration [47]. However, physical activity remains
essential for reducing sarcopenia by regulating pro-inflammatory cytokines and miRNA
levels through the IGF-1/AKT/mTOR signalling pathway [38,48].

Although sarcopenia is undoubtedly the result of several factors, its etiopathogenesis
is still poorly understood. Therefore, identifying miRNAs might contribute to a better
understanding of this phenomenon, even though the description of the myomiR profile is
still in its early stages. This group of miRNAs appears to regulate satellite cell differentiation,
overall proteostasis, muscle fibre structure and type, mitochondria and oxidative stress
metabolism, the neurodegeneration process, and adipocyte infiltration into the skeletal
muscle tissue of CKD patients.

6. miRNAs in Physical Activity and Exercise

Numerous studies have demonstrated that regular physical activity and exercise can
significantly reduce the risk of cardiovascular disease, metabolic syndrome, and type 2
diabetes while also benefiting bone mineral density, muscle mass, and mood [49]. Even
relatively short periods (less than four weeks) of bed rest without physical activity lead to
negative structural and functional changes in various organs [50].

On the other hand, physical inactivity is typically exhibited in CKD patients, reaching
its peak in HD patients. The low level of physical activity depends on many factors, includ-
ing age, a high number of comorbidities, depression, fatigue, and sarcopenia. Furthermore,
physical inactivity, together with obesity, smoking, and alcohol consumption, are major
risk factors for chronic non-communicable diseases [51].

Patients with ESKD frequently have many comorbidities and risk factors. In the
CHARES study, CV disease (24% and 12% in males and females, respectively), hypertension
(78%, 71%), diabetes mellitus (33%, 24%), obesity (38%, 40%), and smoking (19%, 15%)
were much more frequent than in the non-CKD population [52].

Thus, it is essential that stages of CKD patients, including HD patients, are engaged in
appropriate levels of physical activity carried out with caution and in safe conditions [53].

6.1. Muscle Effect

Physical activity triggers the activation of second messengers, such as Ca++/CaMK,
AMP/AMPK, and PKD. The activation of AMP/AMPK signalling through physical exercise
determines the expression of glucose transporter type 4 (GLUT-4), peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α), and nuclear respiratory factor 1
(NRF-1). This effect, in turn, leads to the expression of genes involved in biogenesis and
mitochondrial oxidative capacity [54]. Furthermore, physical activity induces epigenetic
changes in the chromatin structure (methylation/histone acetylation), DNA methylation,
and miRNA expression [55,56]. These mechanisms positively or negatively modulate the
expression of the genes related to the proliferation of precursor cells, differentiation of
microtubules, mitochondrial biogenesis and oxidative capacity, determination of muscle
fibre type, mass maintenance and/or muscle hypertrophy, and muscle contractility [57].

On the other hand, physical exercise can modulate the gene expression profile in
many cells and tissues [58], including the specific expression of miRNAs [59]. At the
transcriptomic level, the activation of angiogenesis and tissue developmental networks
during aerobic training predicts miRNAs’ modulation of RUNX2, SOX9, and PAX3 [57].

The regulation of gene expression is also influenced by the type of exercise, including
endurance and resistance training [60]. In essence, endurance exercise, known as aerobic
exercise, is defined by the American College of Sports Medicine as any activity that can
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be performed continuously using large muscle groups [61]. This exercise uses aerobic
metabolism to engage and contract the muscle groups. On the other hand, resistance
training encompasses exercises designed to increase the strength, power, hypertrophy,
and/or endurance of specific muscles or muscle groups [62]. Indeed, this type of training
stimulates the biosynthesis of contractile and structural proteins, leading to muscle hyper-
trophy and enhanced generation of contraction force. Furthermore, the satellite cells of
skeletal muscles increase during resistance training due to the production of myokines,
which are cytokine-like molecules secreted by skeletal muscles [63].

Aerobic physical exercise, for instance, increases the circulating plasma/serum levels
of specific miRNAs (miR-1, miR-20a, miR-21, mir-126, miR-133a, miR-133b, miR-146a,
miR-181a, miR-206, miR-221, and miR-222) in humans (Table 1 and Figure 1) [64,65].

Table 1. Levels of miRNAs modified in response to physical exercise.

miRNAs Type of Exercise Effects

miR-1 Acute endurance training
Chronic endurance training Increase

miR-16 Aerobic exercise Increase

miR-7 Aerobic exercise Decrease

miR-20a Sustained rowing exercise training Increase

miR-21 Acute endurance training
Chronic endurance training Increase

miR-29 Aerobic exercise Decrease

miR-126 Acute endurance training
Chronic endurance training Increase

miR-133a Acute resistance exercise
Regular resistance exercise Increase

miR-133b Acute resistance exercise
Regular resistance exercise Increase

miR-146a Acute exhaustive cycling exercise
Sustained rowing exercise training Increase

miR-148b Aerobic exercise Increase

miR-181a Acute endurance training
Chronic endurance training Increase

miR-196b Aerobic exercise Increase

miR-206 Acute endurance training
Chronic endurance training Increase

miR-208-5p Aerobic exercise Increase

miR-221 Acute exhaustive cycling exercise Increase

miR-222 Acute exhaustive cycling exercise
Sustained rowing exercise training Increase

miR-499 Aerobic exercise Increase

Limited data on miRNA in HD patients who engage in exercise training are available.
Resistance training during dialysis provides a non-pharmacological stimulus that may
counteract decreases in protein synthesis and alterations in the activity of miRNAs caused
by disease and treatment [28–30]. The effectiveness of exercise for improving health-related
risks in both resistance and aerobic exercises during dialysis depends on the range of
functional and metabolic adaptations of the muscle tissue [27].

Most HD patients have low exercise tolerance due to decreased muscle mass resulting
from CKD-related catabolic status, cardiovascular complications, mitochondrial dysfunc-
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tion, anaemia, and CKD-related mineral bone disorders [46]. Increasing or maintaining
exercise tolerance is a critical factor in improving the quality of life of HD patients [66].

6.2. Biomineralization Phenomena

miRNAs play a role in regulating the osteogenic commitment of endothelial progenitor
cells (EPCs) in response to physical exercise [67,68]. EPCs contribute to angiogenesis,
vascular repair, and improved endothelial function, and reduced circulating EPCs are
associated with vascular disease [69]. A recent study investigated the effect of physical
exercise on the modulation of selected miRNAs in osteogenic differentiation using sera from
half-marathon runners in cultured human mesenchymal stromal cells (MSCs). The results
revealed increased expression of miR-21-5p, miR-129-5p, and miR-378-5p (Figure 1), which
promote osteogenic differentiation, and reduced expression of miR-188-5p, involved in
adipogenic progenitor cell differentiation. Additionally, downregulation of PTEN-SMAD7
expression and upregulation of protein levels of AKT/pAKT-SMAD4 along with RUNX2
was found in MSCs treated with post-run sera, highlighting the involvement of miR-21 in
osteogenic differentiation [68].

Patients on dialysis treatment are susceptible to accelerated vascular calcification,
defined as an inappropriate pathological deposition of calcium crystals in the vasculature,
and, consequently, cardiovascular morbidity and mortality [70–72]. One mechanism is
hyperphosphatemia-induced medial calcification, which involves the osteochondrogenic
switch of VSMCs [73]. These actively participate in hydroxyapatite deposition in the ex-
tracellular matrix (ECM) caused by their osteoblastic-like trans-differentiation induced by
high-Pi. This phenotypic switch can lead to changes in ECM characteristics that contribute
to arterial stiffness [74]. Nonetheless, a distinct miRNA expression pattern emerges during
osteogenic differentiation, indicating their essential role in bone formation [75]. Several
miRNAs, including miR-128, mi-R130a-3p, miR-139-5p, and miR-378, are involved in
this complex process by regulating the expression of various osteogenic proteins. Firstly,
miR-128, if upregulated, increases the osteogenic differentiation of stem cells by enhancing
the expression of alkaline phosphatase (ALP), the mineralization of the matrix, and the
expression of the osteogenic proteins RUNX2, BMP-2, and COLA1 [76]. As a further ef-
fect, miR-128 enhances the activity of the Wnt/β-Catenin signalling pathway by targeting
DKK2, an antagonist for this pathway [77]. Conversely, suppression of miR-128 inhibits the
differentiation of osteoblasts. Secondly, miR-130a-3p can stimulate the osteogenic differen-
tiation of ADSCs by reducing the expression of SIRT7, which subsequently enhances Wnt
signalling-related proteins [78]. Thirdly, mirR-139-5p targets CTNNB1 and FZD4, which
are essential molecules in the Wnt/β-Catenin cascade [79]. Lastly, miR-378 inactivates
Wnt/β-Catenin signalling by suppressing the osteogenesis of human MSCs targeting Wnt6
and Wnt10a [57].

However, a growing interest in the scientific community has been directed towards
two specific miRNAs, namely miR-9 and miR-30b. The first miRNA has been shown to
modulate the proliferation of vascular smooth muscle cells in diabetic mice [80] and pro-
mote the osteoblast differentiation of mesenchymal stem cells in both human and murine
models by binding to the 3’UTR region of DKK1 [81,82]. The second miRNA plays vari-
ous biological roles, including the inhibition of proliferation, autophagy, apoptosis, and
epithelial-to-mesenchymal and even osteoblastic transitions [83]. Notably, the downregula-
tion of miRNA-30b has been demonstrated to induce the dedifferentiation of VSMCs into
an osteoblastic-like phenotype by enhancing the expression of the Runx2 protein. Inter-
estingly, Runx2 is a transcription factor expressed in response to pro-calcifying stimuli by
osteoblastic-like VSMCs that activates the differentiation of osteoblasts and chondrocytes,
a pivotal factor in promoting vascular calcification [84,85]. However, the effect of physical
exercise on these miRNAs has yet to be investigated in CKD patients on dialysis.
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7. Study Protocol

To the best of our knowledge, there is currently no available data regarding the effect
of physical exercise on the expression of miRNAs involved in osteogenic differentiation in
HD patients. We plan to conduct an observational and longitudinal case-control study to
primarily evaluate the expression of circulating miRNAs, known as miR-9 and miR-30b, in
patients on maintenance dialysis who practice physical exercise training compared to the
control group.

This ancillary study of an ongoing trial [86] will enrol male subjects aged between
50 and 80 years with end-stage kidney disease undergoing hemodialytic treatment for at
least three months who can walk for at least six meters. A Mini-Mental Status Examination
score of ≥18 out of 30 will be required to ensure patients can give informed consent. Subjects
with uncorrected anaemia (haemoglobin concentration <9 g/dL), acute infectious disease
(C-reactive protein > 10 mg/L), uncontrolled hyperparathyroidism (both primitive and
secondary), active oncologic disease, and severe cardio-respiratory concerns (e.g., unstable
angina or severe heart failure identified by the New York Heart Association as class III-IV),
as well as those with musculoskeletal or neurological conditions (e.g., lower limb major
amputation) inhibiting exercise training, will be excluded. The Area-Vasta Emilia-Romagna
Centro Ethics Committee (Bologna, Italy) approved the trial with the number 48/2019. A
specific amendment was required and obtained for processing blood sample collection
and analysis (EM169-2022_48/2019). We plan to enrol 15 patients (and 5 controls) in the
pilot study.

7.1. Exercise Program

An exercise facilitator in the dialysis unit will administer a 3-month low-intensity
exercise program. Each patient will be able to select the most appropriate training program
that he/she prefers, choosing from a supervised or home-based program.

The supervised training will be carried out in the dialysis unit immediately before or
after the dialysis session, and it will consist of 30-min sessions to be repeated 2 or 3 times
per week.

The exercise regimen will include low-intensity walking, resistance and power exer-
cises with elastic bands, ankle weights, and stretching for each session.

The training intensity will be set according to the patient’s baseline capacity and will
be increased weekly.

Home-based training will consist of a semipersonalized walking program derived
from previous experience with ESKD patients [87–90].

The program will involve a 10-min session daily, including intermittent walking
with 1 or 2 min of work followed by a 1-min seated rest. The speed will be translated
into a walking cadence, progressively increased weekly, and monitored at home using a
metronome application on the patient’s smartphone.

More details related to the exercise programs are reported in the study protocol [91].

7.2. Control Group

A sample of HD patients with the same characteristics but who are unwilling to
undertake any exercise intervention will be enrolled as a control group, and they will
perform outcome measure sessions only, including blood sample collection.

7.3. Outcome Measures

The primary outcome will be miRNA analyses performed on samples collected during
the short interdialytic period at baseline at the end of the program (3 months) and at a
6-month follow-up. As a secondary outcome, patients’ physical performance changes will
be assessed through the 6-min walking test.
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7.4. Blood Sample Collection and Analysis

Demographic data (comorbidities, dialysis vintage, cause of CKD), clinical parameters
(systolic blood pressure, diastolic blood pressure, heart rate, Body Mass Index), and dialytic
characteristics (urea reduction ratio and standard Kt/V urea calculation according to
Daugirdas’ formula) will be collected at baseline. In addition, biochemical data, including
haemoglobin, fasting glucose, creatinine, urea, sodium, potassium, calcium, phosphorus,
uric acid, total proteins, albumin, vitamin D, and parathormone, will be tested.

To analyze miRNAs, peripheral blood samples (10 mL) will be collected and cen-
trifuged at 400× g. miRNAs will be extracted from serum samples using the miRNeasy
Serum/Plasma Advanced Kit (Quiagen Italia, Milano, Italy). The amount of RNA obtained
will be quantified by measuring the absorbance at 260 nm. The purity of RNA will be
checked by calculating the absorbance ratio at 260 nm compared to that at 280 nm, with a
ratio ranging from 1.8 to 2.0 considered pure. miRNA analyses will be performed twice at
baseline. A portion of the serum sample will be stored for future analysis.

First-strand cDNA will be synthesized according to the manufacturer’s protocol using
the TaqMan microRNA Reverse Transcription Kit (Applied Biosystems Italia, Milano,
Italy) with Reverse Buffer 10×, H2O, RNase Inhibitor, 4 dNTPs, specific primers, and
RT Multriscribe.

The retrotranscription program will be 30′ 16 ◦C–30′ 42 ◦C–5′ 85 ◦C–4 ◦C (1.06 h). The
resulting cDNA product will be aliquoted in equal volumes and stored at −20 ◦C. Real-time
RT-PCR reactions will be carried out in multiplex. The real-time amplifications will include
10 min at 95 ◦C, 40 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min. The expression levels will
be calculated for each sample in triplicate after normalization against the housekeeping
genes (β2 microglobulin and GAPDH for mRNA or RNU44 for miRNAs) using the relative
fold expression differences.

At baseline, a lateral plain X-ray of the lumbar spine and an echocardiogram will be
performed to detect abdominal aortic and valvular calcification, respectively [91].

7.5. Statistical Analysis

The nominal variables will be presented as frequencies and percentages. The con-
tinuous variables will be reported as means with standard deviations or medians with
interquartile ranges, depending on their distribution. Overtime variations in outcome
measures, including miRNA expression, will be assessed through paired-sample tests
according to data distribution. The comparison with the control group will be carried out
via independent sample analyses. According to the study timeline, mixed models will
be employed to assess the associations between the outcome measures and the clinical
variables. A p-value of less than 0.05 will be considered statistically significant for all tests.
The statistical analysis will be performed using SPSS 21.0.

8. Conclusions

Changing expressions of miRNAs can be used as valuable biomarkers for identify-
ing skeletal muscle modulation during physical activity and exercise training in dialysis
patients. Indeed, miRNAs can influence the gene expression involved in not only muscle
mass, structure, and function but also in epithelial–mesenchymal transition, angiogenesis,
fibrosis, inflammation, and osteogenic differentiation. These processes play a critical role in
the development of vascular calcification.

In our study, we will address a gap in the current literature by assessing, for the first
time, the expression of miR-9 and miR-30b among HD patients who will participate in a
3-month low-intensity exercise program. These two miRNAs transform mesenchymal cells
into an osteogenic phenotype along blood vessels. The results of our study will furnish
novel and innovative evidence concerning the potential utility of miRNAs as biomarkers
for assessing cardiovascular risk in physical exercise among HD patients.
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