We demonstrate SHACTOR, a system for extracting and analyzing validating shapes from very large Knowledge Graphs (KGs). Shapes represent a specific form of data patterns, akin to schemas for entities. Standard shape extraction approaches are likely to produce thousands of shapes, and some of those represent spurious constraints extracted due to the presence of erroneous data in the KG. Given a KG having tens of millions of triples and thousands of classes, SHACTOR parses the KG using our efficient and scalable shapes extraction algorithm and outputs SHACL shapes constraints. The extracted shapes are further annotated with statistical information regarding their support in the graph, which allows to identify both erroneous and missing triples in the KG. Hence, SHACTOR can be used to extract, analyze, and clean shape constraints from very large KGs. Furthermore, it enables the user to also find and correct errors by automatically generating SPARQL queries over the graph to retrieve nodes and facts that are the source of the spurious shapes and to intervene by amending the data.

SHACTOR: Improving the Quality of Large-Scale Knowledge Graphs with Validating Shapes

Matteo Lissandrini;
2023-01-01

Abstract

We demonstrate SHACTOR, a system for extracting and analyzing validating shapes from very large Knowledge Graphs (KGs). Shapes represent a specific form of data patterns, akin to schemas for entities. Standard shape extraction approaches are likely to produce thousands of shapes, and some of those represent spurious constraints extracted due to the presence of erroneous data in the KG. Given a KG having tens of millions of triples and thousands of classes, SHACTOR parses the KG using our efficient and scalable shapes extraction algorithm and outputs SHACL shapes constraints. The extracted shapes are further annotated with statistical information regarding their support in the graph, which allows to identify both erroneous and missing triples in the KG. Hence, SHACTOR can be used to extract, analyze, and clean shape constraints from very large KGs. Furthermore, it enables the user to also find and correct errors by automatically generating SPARQL queries over the graph to retrieve nodes and facts that are the source of the spurious shapes and to intervene by amending the data.
2023
9781450395076
data modelling, knowledge graphs, data quality
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1119495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact