Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals X. We focus on a common formulation of the problem where the path weights must be non-negative integers and also on a new variant where these weights can be negative. We show that, for acyclic graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the non-negative version, we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X) on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs), and strengthen its worst-case approximation ratio from Ω(√m) to Ω(m / log m) for sparse graphs, where m is the number of edges in the graph. For the negative version, we give a (⌈log ║X║⌉+1)-approximation (║X║ being the maximum absolute value of X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary flows (║X║ ≤ 1) into at most width paths. We also disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.

### Width Helps and Hinders Splitting Flows

#### Abstract

Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals X. We focus on a common formulation of the problem where the path weights must be non-negative integers and also on a new variant where these weights can be negative. We show that, for acyclic graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the non-negative version, we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X) on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs), and strengthen its worst-case approximation ratio from Ω(√m) to Ω(m / log m) for sparse graphs, where m is the number of edges in the graph. For the negative version, we give a (⌈log ║X║⌉+1)-approximation (║X║ being the maximum absolute value of X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary flows (║X║ ≤ 1) into at most width paths. We also disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.
##### Scheda breve Scheda completa Scheda completa (DC)
2022
flow decomposition, approximation algorithms, graph width
File in questo prodotto:
File

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 1.24 MB

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11562/1117634`
• ND
• 1
• ND