Recommendation systems (RSs) are increasing their popularity in recent years. Many big IT companies like Google, Amazon and Netflix, have a RS at the core of their business. In this paper, we propose a modular platform for enhancing a RS for the tourism domain with a crowding forecaster, which is able to produce an estimation about the current and future occupation of different Points of Interest (PoIs) by taking into consideration also contextual aspects. The main advantage of the proposed system is its modularity and the ability to be easily tailored to different application domains. Moreover, the use of standard and pluggable components allows the system to be integrated in different application scenarios.
A Context-Aware Recommendation System with a Crowding Forecaster
Anna Dalla Vecchia;Sara Migliorini;Elisa Quintarelli;Alberto Belussi
2023-01-01
Abstract
Recommendation systems (RSs) are increasing their popularity in recent years. Many big IT companies like Google, Amazon and Netflix, have a RS at the core of their business. In this paper, we propose a modular platform for enhancing a RS for the tourism domain with a crowding forecaster, which is able to produce an estimation about the current and future occupation of different Points of Interest (PoIs) by taking into consideration also contextual aspects. The main advantage of the proposed system is its modularity and the ability to be easily tailored to different application domains. Moreover, the use of standard and pluggable components allows the system to be integrated in different application scenarios.File | Dimensione | Formato | |
---|---|---|---|
SEBD_2023_paper41.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.