Constructing a holistic digital twin of a system composed of multiple physical domains is crucial for various tasks. In particular, when the simulation is extended with faults, it becomes a very important resource to achieve robust functional safety analysis. This article proposes a new methodology to build non-electrical fault models for the thermal domain. Such thermal faults are defined through an electrical circuit representing the thermal behavior of the system, known as the Cauer network, based on the physical analogies between the two domains. Including this thermal representation in a multi-domain system allows to simulate the interconnections between different physical domains, thus achieving a more realistic system behavior and evaluating the mutual impact of different domains (e.g., mechanical, electrical and thermal). The entire methodology is applied to a complex case of study implemented by using Verilog-AMS as a proof of concept.

Thermal Digital Twin of a Multi-Domain System for Discovering Mechanical Faulty Behaviors

Francesco Tosoni
;
Nicola Dall'Ora
;
Enrico Fraccaroli;Franco Fummi
2023-01-01

Abstract

Constructing a holistic digital twin of a system composed of multiple physical domains is crucial for various tasks. In particular, when the simulation is extended with faults, it becomes a very important resource to achieve robust functional safety analysis. This article proposes a new methodology to build non-electrical fault models for the thermal domain. Such thermal faults are defined through an electrical circuit representing the thermal behavior of the system, known as the Cauer network, based on the physical analogies between the two domains. Including this thermal representation in a multi-domain system allows to simulate the interconnections between different physical domains, thus achieving a more realistic system behavior and evaluating the mutual impact of different domains (e.g., mechanical, electrical and thermal). The entire methodology is applied to a complex case of study implemented by using Verilog-AMS as a proof of concept.
2023
Multi-domain systems
Thermal
Electrical
Digital twin
Simulation
Multi-domain faults
Verilog-AMS
File in questo prodotto:
File Dimensione Formato  
Thermal_Digital_Twin_of_a_Multi-Domain_System_for_Discovering_Mechanical_Faulty_Behaviors.pdf

solo utenti autorizzati

Descrizione: Versione dell'editore
Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 616.04 kB
Formato Adobe PDF
616.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1102666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact