Pre-trained language models are now ubiquitous in natural language processing, being successfully applied for many different tasks and in several real-world applications. However, even though there is a wealth of high-quality written materials on surgery, and the scientific community has shown a growing interest in the application of natural language processing techniques in surgery, a pre-trained language model specific to the surgical domain is still missing. The creation and public release of such a model would serve numerous useful clinical applications. For example, it could enhance existing surgical knowledge bases employed for task automation, or assist medical students in summarizing complex surgical descriptions. For this reason, in this paper, we introduce SurgicBERTa, a pre-trained language model specific for the English surgical language, i.e., the language used in the surgical domain. SurgicBERTa has been obtained from RoBERTa through continued pre-training with the Masked language modeling objective on 300 k sentences taken from English surgical books and papers, for a total of 7 million words. By publicly releasing SurgicBERTa, we make available a resource built from the content collected in many high-quality surgical books, online textual resources, and academic papers. We performed several assessments in order to evaluate SurgicBERTa, comparing it with the general domain RoBERTa. First, we intrinsically assessed the model in terms of perplexity, accuracy, and evaluation loss resulting from the continual training according to the masked language modeling task. Then, we extrinsically evaluated SurgicBERTa on several downstream tasks, namely (i) procedural sentence detection, (ii) procedural knowledge extraction, (iii) ontological information discovery, and (iv) surgical terminology acquisition. Finally, we conducted some qualitative analysis on SurgicBERTa, showing that it contains a lot of surgical knowledge that could be useful to enrich existing state-of-the-art surgical knowledge bases or to extract surgical knowledge. All the assessments show that SurgicBERTa better deals with surgical language than a general-purpose pre-trained language model such as RoBERTa, and therefore can be effectively exploited in many computer-assisted applications in the surgical domain.
Surgicberta: a pre-trained language model for procedural surgical language
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Marco Bombieri
;Marco Rospocher;Paolo Fiorini
	
		
		
	
			2024-01-01
Abstract
Pre-trained language models are now ubiquitous in natural language processing, being successfully applied for many different tasks and in several real-world applications. However, even though there is a wealth of high-quality written materials on surgery, and the scientific community has shown a growing interest in the application of natural language processing techniques in surgery, a pre-trained language model specific to the surgical domain is still missing. The creation and public release of such a model would serve numerous useful clinical applications. For example, it could enhance existing surgical knowledge bases employed for task automation, or assist medical students in summarizing complex surgical descriptions. For this reason, in this paper, we introduce SurgicBERTa, a pre-trained language model specific for the English surgical language, i.e., the language used in the surgical domain. SurgicBERTa has been obtained from RoBERTa through continued pre-training with the Masked language modeling objective on 300 k sentences taken from English surgical books and papers, for a total of 7 million words. By publicly releasing SurgicBERTa, we make available a resource built from the content collected in many high-quality surgical books, online textual resources, and academic papers. We performed several assessments in order to evaluate SurgicBERTa, comparing it with the general domain RoBERTa. First, we intrinsically assessed the model in terms of perplexity, accuracy, and evaluation loss resulting from the continual training according to the masked language modeling task. Then, we extrinsically evaluated SurgicBERTa on several downstream tasks, namely (i) procedural sentence detection, (ii) procedural knowledge extraction, (iii) ontological information discovery, and (iv) surgical terminology acquisition. Finally, we conducted some qualitative analysis on SurgicBERTa, showing that it contains a lot of surgical knowledge that could be useful to enrich existing state-of-the-art surgical knowledge bases or to extract surgical knowledge. All the assessments show that SurgicBERTa better deals with surgical language than a general-purpose pre-trained language model such as RoBERTa, and therefore can be effectively exploited in many computer-assisted applications in the surgical domain.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Bombieri_et_al_SurgicBERTa_2023.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Documento in Post-print
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										718.38 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								718.38 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



