This work presents our team solution for task 4a (Message Polarity Classification) at the SemEval 2016 challenge. Our experiments have been carried out over the Twitter dataset provided by the challenge. We follow a supervised approach, exploiting a SVM polynomial kernel classifier trained with the challenge data. The classifier takes as input advanced NLP features. This paper details the features and discusses the achieved results

MIB at SemEval-2016 task 4a: Exploiting lexicon-based features for sentiment analysis in Twitter

Cozza, V.;
2016-01-01

Abstract

This work presents our team solution for task 4a (Message Polarity Classification) at the SemEval 2016 challenge. Our experiments have been carried out over the Twitter dataset provided by the challenge. We follow a supervised approach, exploiting a SVM polynomial kernel classifier trained with the challenge data. The classifier takes as input advanced NLP features. This paper details the features and discusses the achieved results
2016
sentiment analysis
natural language processing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1098231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact