Robot-assisted minimally invasive surgery is the gold standard for the surgical treatment of many pathological conditions since it guarantees to the patient shorter hospital stay and quicker recovery. Several manuals and academic papers describe how to perform these interventions and thus contain important domain-specific knowledge. This information, if automatically extracted and processed, can be used to extract or summarize surgical practices or develop decision making systems that can help the surgeon or nurses to optimize the patient’s management before, during, and after the surgery by providing theoretical-based suggestions. However, general English natural language understanding algorithms have lower efficacy and coverage issues when applied to domain others than those they are typically trained on, and a domain specific textual annotated corpus is missing. To overcome this problem, we annotated the first robotic-surgery procedural corpus, with PropBank-style semantic labels. Starting from the original PropBank framebank, we enriched it by adding new lemmas, frames and semantic arguments required to cover missing information in general English but needed in procedural surgical language, releasing the Robotic-Surgery Procedural Framebank (RSPF). We then collected from robotic-surgery textbooks as-is sentences for a total of 32,448 tokens, and we annotated them with RSPF labels. We so obtained and publicly released the first annotated corpus of the robotic-surgical domain that can be used to foster further research on language understanding and procedural entities and relations extraction from clinical and surgical scientific literature.
The robotic-surgery propositional bank
Marco Bombieri
;Marco Rospocher;Paolo Fiorini
2024-01-01
Abstract
Robot-assisted minimally invasive surgery is the gold standard for the surgical treatment of many pathological conditions since it guarantees to the patient shorter hospital stay and quicker recovery. Several manuals and academic papers describe how to perform these interventions and thus contain important domain-specific knowledge. This information, if automatically extracted and processed, can be used to extract or summarize surgical practices or develop decision making systems that can help the surgeon or nurses to optimize the patient’s management before, during, and after the surgery by providing theoretical-based suggestions. However, general English natural language understanding algorithms have lower efficacy and coverage issues when applied to domain others than those they are typically trained on, and a domain specific textual annotated corpus is missing. To overcome this problem, we annotated the first robotic-surgery procedural corpus, with PropBank-style semantic labels. Starting from the original PropBank framebank, we enriched it by adding new lemmas, frames and semantic arguments required to cover missing information in general English but needed in procedural surgical language, releasing the Robotic-Surgery Procedural Framebank (RSPF). We then collected from robotic-surgery textbooks as-is sentences for a total of 32,448 tokens, and we annotated them with RSPF labels. We so obtained and publicly released the first annotated corpus of the robotic-surgical domain that can be used to foster further research on language understanding and procedural entities and relations extraction from clinical and surgical scientific literature.File | Dimensione | Formato | |
---|---|---|---|
marco_bombieri_LRE.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.