Meteorological forecasting is the process of providing reliable prediction about the future weathear within a given interval of time. Forecasters adopt a model of reasoning that can be mapped onto an integrated conceptual framework. A forecaster essentially precesses data in advance by using some models of machine learning to extract macroscopic tendencies such as air movements, pressure, temperature, and humidity differentials measured in ways that depend upon the model, but fundamentally, as gradients. Limit values are employed to transform these tendencies in fuzzy values, and then compared to each other in order to extract indicators, and then evaluate these indicators by means of priorities based upon distance in fuzzy values. We formalise the method proposed above in a workflow of evaluation steps, and propose an architecture that implements the reasoning techniques. (C) 2018 The Authors. Published by Elsevier Ltd.

It could rain: weather forecasting as a reasoning process

Cristani, M;Olivieri, F;Tomazzoli, C;Zorzi, M
2018-01-01

Abstract

Meteorological forecasting is the process of providing reliable prediction about the future weathear within a given interval of time. Forecasters adopt a model of reasoning that can be mapped onto an integrated conceptual framework. A forecaster essentially precesses data in advance by using some models of machine learning to extract macroscopic tendencies such as air movements, pressure, temperature, and humidity differentials measured in ways that depend upon the model, but fundamentally, as gradients. Limit values are employed to transform these tendencies in fuzzy values, and then compared to each other in order to extract indicators, and then evaluate these indicators by means of priorities based upon distance in fuzzy values. We formalise the method proposed above in a workflow of evaluation steps, and propose an architecture that implements the reasoning techniques. (C) 2018 The Authors. Published by Elsevier Ltd.
2018
Automated reasoning; Meteorological forecasting; Assisted decision making
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1095220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact