We introduce a typed natural deduction system designed to formally verify the presence of bias in automatic labeling methods. The system relies on a ”data-as-terms” and ”labels-as-types” interpretation of formulae, with derivability contexts encoding probability distributions on training data. Bias is understood as the divergence that expected probabilistic labeling by a classifier trained on opaque data displays from the fairness constraints set by a transparent dataset.

Proof-checking Bias in Labeling Methods

F. A. D'Asaro
2022-01-01

Abstract

We introduce a typed natural deduction system designed to formally verify the presence of bias in automatic labeling methods. The system relies on a ”data-as-terms” and ”labels-as-types” interpretation of formulae, with derivability contexts encoding probability distributions on training data. Bias is understood as the divergence that expected probabilistic labeling by a classifier trained on opaque data displays from the fairness constraints set by a transparent dataset.
2022
9791221045420
Bias, Classifiers, Formal Verification
File in questo prodotto:
File Dimensione Formato  
paper1.pdf

accesso aperto

Licenza: Creative commons
Dimensione 301.05 kB
Formato Adobe PDF
301.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1086371
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact