Background: We have previously shown that eliciting SARS-CoV-2-specific IgM after vaccination is associated with higher levels of SARS-CoV-2 neutralizing IgG. This study aims to assess whether IgM development is also associated with longer-lasting immunity. Methods: We analysed anti-SARS-CoV-2 spike protein IgG and IgM (IgG-S, IgM-S), and anti-nucleocapsid IgG (IgG-N) in 1872 vaccinees at different time points: before the first dose (D1; w0), before the second dose (D2; w3) at three (w6) and 23 weeks (w29) after D2; moreover, 109 subjects were further tested at the booster dose (D3, w44), at 3 weeks (w47) and 6 months (w70) after D3. Two-level linear regression models were used to evaluate the differences in IgG-S levels. Findings: In subjects who had no evidence of a previous infection at D1 (non-infected, NI), IgM-S development after D1 and D2 was associated with higher IgG-S levels at short (w6, p < 0.0001) and long (w29, p < 0.001) follow-up. Similar IgG-S levels were observed after D3. The majority (28/33, 85%) of the NI subjects who had developed IgM-S in response to vaccination did not experience infection. Interpretation: The development of anti-SARS-CoV-2 IgM-S following D1 and D2 is associated with higher IgG-S levels. Most individuals who developed IgM-S never became infected, suggesting that IgM elicitation may be associated with a lower risk of infection. Funding: "Fondi Ricerca Corrente" and "Progetto Ricerca Finalizzata" COVID-2020 (Italian Ministry of Health); FUR 2020 Department of Excellence 2018-2022 (MIUR, Italy); the Brain Research Foundation Verona.
Subjects who developed SARS-CoV-2 specific IgM after vaccination show a longer humoral immunity and a lower frequency of infection
Ruggiero, Alessandra;Calciano, Lucia;Accordini, Simone;Bisoffi, Zeno;Zipeto, Donato
2023-01-01
Abstract
Background: We have previously shown that eliciting SARS-CoV-2-specific IgM after vaccination is associated with higher levels of SARS-CoV-2 neutralizing IgG. This study aims to assess whether IgM development is also associated with longer-lasting immunity. Methods: We analysed anti-SARS-CoV-2 spike protein IgG and IgM (IgG-S, IgM-S), and anti-nucleocapsid IgG (IgG-N) in 1872 vaccinees at different time points: before the first dose (D1; w0), before the second dose (D2; w3) at three (w6) and 23 weeks (w29) after D2; moreover, 109 subjects were further tested at the booster dose (D3, w44), at 3 weeks (w47) and 6 months (w70) after D3. Two-level linear regression models were used to evaluate the differences in IgG-S levels. Findings: In subjects who had no evidence of a previous infection at D1 (non-infected, NI), IgM-S development after D1 and D2 was associated with higher IgG-S levels at short (w6, p < 0.0001) and long (w29, p < 0.001) follow-up. Similar IgG-S levels were observed after D3. The majority (28/33, 85%) of the NI subjects who had developed IgM-S in response to vaccination did not experience infection. Interpretation: The development of anti-SARS-CoV-2 IgM-S following D1 and D2 is associated with higher IgG-S levels. Most individuals who developed IgM-S never became infected, suggesting that IgM elicitation may be associated with a lower risk of infection. Funding: "Fondi Ricerca Corrente" and "Progetto Ricerca Finalizzata" COVID-2020 (Italian Ministry of Health); FUR 2020 Department of Excellence 2018-2022 (MIUR, Italy); the Brain Research Foundation Verona.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352396423000361-main.pdf
accesso aperto
Descrizione: CC BY-NC-ND 4.0 publisher version
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.