The automatic extraction of procedural surgical knowledge from surgery manuals, academic papers or other high-quality textual resources, is of the utmost importance to develop knowledge-based clinical decision support systems, to automatically execute some procedure’s step or to summarize the procedural information, spread throughout the texts, in a structured form usable as a study resource by medical students. In this work, we propose a first benchmark on extracting detailed surgical actions from available intervention procedure textbooks and papers. We frame the problem as a Semantic Role Labeling task. Exploiting a manually annotated dataset, we apply different Transformer-based information extraction methods. Starting from RoBERTa and BioMedRoBERTa pre-trained language models, we first investigate a zero-shot scenario and compare the obtained results with a full fine-tuning setting. We then introduce a new ad-hoc surgical language model, named SurgicBERTa, pre-trained on a large collection of surgical materials, and we compare it with the previous ones. In the assessment, we explore different dataset splits (one in-domain and two out-of-domain) and we investigate also the effectiveness of the approach in a few-shot learning scenario. Performance is evaluated on three correlated sub-tasks: predicate disambiguation, semantic argument disambiguation and predicate-argument disambiguation. Results show that the fine-tuning of a pre-trained domain-specific language model achieves the highest performance on all splits and on all sub-tasks. All models are publicly released.

Machine understanding surgical actions from intervention procedure textbooks

Marco Bombieri
;
Marco Rospocher;Paolo Fiorini
2023-01-01

Abstract

The automatic extraction of procedural surgical knowledge from surgery manuals, academic papers or other high-quality textual resources, is of the utmost importance to develop knowledge-based clinical decision support systems, to automatically execute some procedure’s step or to summarize the procedural information, spread throughout the texts, in a structured form usable as a study resource by medical students. In this work, we propose a first benchmark on extracting detailed surgical actions from available intervention procedure textbooks and papers. We frame the problem as a Semantic Role Labeling task. Exploiting a manually annotated dataset, we apply different Transformer-based information extraction methods. Starting from RoBERTa and BioMedRoBERTa pre-trained language models, we first investigate a zero-shot scenario and compare the obtained results with a full fine-tuning setting. We then introduce a new ad-hoc surgical language model, named SurgicBERTa, pre-trained on a large collection of surgical materials, and we compare it with the previous ones. In the assessment, we explore different dataset splits (one in-domain and two out-of-domain) and we investigate also the effectiveness of the approach in a few-shot learning scenario. Performance is evaluated on three correlated sub-tasks: predicate disambiguation, semantic argument disambiguation and predicate-argument disambiguation. Results show that the fine-tuning of a pre-trained domain-specific language model achieves the highest performance on all splits and on all sub-tasks. All models are publicly released.
Semantic role labeling, Surgical data science, Procedural knowledge, Information extraction, Natural language processing
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0010482522011234-main.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 846.79 kB
Formato Adobe PDF
846.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1081672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact