Lentils (Lens culinaris spp.) are promising legumes whose seed coats, the by-products produced from dehulling, can represent a valuable source of functional components. This work aimed at valorizing lentils seed coat as functional ingredients, by investigating its profile across 11 genotypes grown in two different growing locations in Italy. The total phenolic, flavonoids, and condensed tannins contents (mg/g dry weight,) ranged from 30.60 to 70.37 gallic acid equivalents, 0.86 to 2.21 catechin equivalents, and 22.34 to 77.49 catechin equivalents, respectively. The untargeted phenolic profiling through UHPLC/QTOF- MS, followed by multivariate statistics, revealed differences in the quality and quantity of polyphenols. A broad and diverse profile could be highlighted, including 420 compounds, mainly ascribable to flavonoids, phenolic acids, and low-molecular- weight phenolic compounds. Unsupervised cluster analysis highlighted that origin is hierarchically more important than genotype in determining the phenolic profiles. Pearson’s correlation analysis showed that color was only partially related to phenolic content, while the geographic location and the genotype were more relevant. The significant accumulation of phenolics in some genotypes suggests that the genetic background should be taken into account, when lentils seed coat is to be included in food design as a sustainable source of phenolic compounds.

Lentil seed coat as a source of phenolic compounds: influence of geographical origin and genotype

Roberta Tolve
;
2022-01-01

Abstract

Lentils (Lens culinaris spp.) are promising legumes whose seed coats, the by-products produced from dehulling, can represent a valuable source of functional components. This work aimed at valorizing lentils seed coat as functional ingredients, by investigating its profile across 11 genotypes grown in two different growing locations in Italy. The total phenolic, flavonoids, and condensed tannins contents (mg/g dry weight,) ranged from 30.60 to 70.37 gallic acid equivalents, 0.86 to 2.21 catechin equivalents, and 22.34 to 77.49 catechin equivalents, respectively. The untargeted phenolic profiling through UHPLC/QTOF- MS, followed by multivariate statistics, revealed differences in the quality and quantity of polyphenols. A broad and diverse profile could be highlighted, including 420 compounds, mainly ascribable to flavonoids, phenolic acids, and low-molecular- weight phenolic compounds. Unsupervised cluster analysis highlighted that origin is hierarchically more important than genotype in determining the phenolic profiles. Pearson’s correlation analysis showed that color was only partially related to phenolic content, while the geographic location and the genotype were more relevant. The significant accumulation of phenolics in some genotypes suggests that the genetic background should be taken into account, when lentils seed coat is to be included in food design as a sustainable source of phenolic compounds.
2022
Food by-products, Functional components, Lentil seed coat, Metabolomics, Polyphenols, UHPLC/ QTOF-MS
File in questo prodotto:
File Dimensione Formato  
Lentil seed coat as a source of phenolic compounds: influence of geographical origin and genotype.pdf

solo utenti autorizzati

Licenza: Accesso ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1079416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact