Geospatial data comprise around 60% of all the publicly available data. One of the essential and most complex operations that brings together multiple geospatial datasets is the spatial join operation. Due to its complexity, there is a lot of partitioning techniques and parallel algorithms for the spatial join problem. This leads to a complex query optimization problem: which algorithm to use for a given pair of input datasets that we want to join? With the rise of machine learning, there is a promise in addressing this problem with the use of various learned models. However, one of the concerns is the lack of a standard and publicly available data to train and test on, as well as the lack of accessible baseline models. This resource paper helps the research community to solve this problem by providing synthetic and real datasets for spatial join, source code for constructing more datasets, and several baseline solutions that researchers can further extend and compare to.

Towards a Learned Cost Model for Distributed Spatial Join: Data, Code & Models

Belussi, Alberto;Migliorini, Sara;
2022-01-01

Abstract

Geospatial data comprise around 60% of all the publicly available data. One of the essential and most complex operations that brings together multiple geospatial datasets is the spatial join operation. Due to its complexity, there is a lot of partitioning techniques and parallel algorithms for the spatial join problem. This leads to a complex query optimization problem: which algorithm to use for a given pair of input datasets that we want to join? With the rise of machine learning, there is a promise in addressing this problem with the use of various learned models. However, one of the concerns is the lack of a standard and publicly available data to train and test on, as well as the lack of accessible baseline models. This resource paper helps the research community to solve this problem by providing synthetic and real datasets for spatial join, source code for constructing more datasets, and several baseline solutions that researchers can further extend and compare to.
2022
9781450392365
machine learning
spatial join
big data
query optimizer
File in questo prodotto:
File Dimensione Formato  
CIKM22_SJML_Resource_Short_Paper.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1076246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact