We study some aspects of the dynamics of the nonholonomic system formed by a heavy homogeneous ball constrained to roll without sliding on a steadily rotating surface of revolution. First, in the case in which the figure axis of the surface is vertical (and hence the system is SO(3) x SO(2)-symmetric) and the surface has a (nondegenerate) maximum at its vertex, we show the existence of motions asymptotic to the vertex and rule out the possibility of blowup. This is done by passing to the 5-dimensional SO(3)-reduced system. The SO(3)-symmetry persists when the figure axis of the surface is inclined with respect to the vertical - and the system can be viewed as a simple model for the Japanese kasamawashi (turning umbrella) performance art - and in that case we study the (stability of the) equilibria of the 5-dimensional reduced system.

On Some Aspects of the Dynamics of a Ball in a Rotating Surface of Revolution and of the Kasamawashi Art

Sansonetto, N
2022

Abstract

We study some aspects of the dynamics of the nonholonomic system formed by a heavy homogeneous ball constrained to roll without sliding on a steadily rotating surface of revolution. First, in the case in which the figure axis of the surface is vertical (and hence the system is SO(3) x SO(2)-symmetric) and the surface has a (nondegenerate) maximum at its vertex, we show the existence of motions asymptotic to the vertex and rule out the possibility of blowup. This is done by passing to the 5-dimensional SO(3)-reduced system. The SO(3)-symmetry persists when the figure axis of the surface is inclined with respect to the vertical - and the system can be viewed as a simple model for the Japanese kasamawashi (turning umbrella) performance art - and in that case we study the (stability of the) equilibria of the 5-dimensional reduced system.
nonholonomic mechanical systems with symmetry
rolling rigid bodies
relative equilibria
kasamawashi
File in questo prodotto:
File Dimensione Formato  
kasam_ArXiv.pdf

accesso aperto

Licenza: Creative commons
Dimensione 599.21 kB
Formato Adobe PDF
599.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1074829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact