Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected. (c) 2022 The Authors. Published by Elsevier B.V.

Distortion and instability compensation with deep learning for rotational scanning endoscopic optical coherence tomography

Liao, Guiqiu;Dall'Alba, Diego;Fiorini, Paolo;
2022

Abstract

Optical Coherence Tomography (OCT) is increasingly used in endoluminal procedures since it provides high-speed and high resolution imaging. Distortion and instability of images obtained with a proximal scanning endoscopic OCT system are significant due to the motor rotation irregularity, the friction between the rotating probe and outer sheath and synchronization issues. On-line compensation of artefacts is essential to ensure image quality suitable for real-time assistance during diagnosis or minimally invasive treatment. In this paper, we propose a new online correction method to tackle both B-scan distortion, video stream shaking and drift problem of endoscopic OCT linked to A-line level image shifting. The proposed computational approach for OCT scanning video correction integrates a Convolutional Neural Network (CNN) to improve the estimation of azimuthal shifting of each A-line. To suppress the accumulative error of integral estimation we also introduce another CNN branch to estimate a dynamic overall orientation angle. We train the network with semi-synthetic OCT videos by intentionally adding rotational distortion into real OCT scanning images. The results show that networks trained on this semi-synthetic data generalize to stabilize real OCT videos, and the algorithm efficacy is demonstrated on both ex vivo and in vivo data, where strong scanning artifacts are successfully corrected. (c) 2022 The Authors. Published by Elsevier B.V.
Convolutional neural network
Endoscopic catheter
Image correction
Optical coherence tomography
Video stabilization
Algorithms
Artifacts
Humans
Neural Networks, Computer
Deep Learning
Tomography, Optical Coherence
File in questo prodotto:
File Dimensione Formato  
Distortion and instability compensation with deep learning for rotational scanning endoscopic optical coherence tomography.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 5.74 MB
Formato Adobe PDF
5.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1074689
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact