The type and the amount of starch present in bakery products affect their glycaemic index. The control of glycaemic index in our diet can be relevant to reduce the risk of type 2 diabetes and heart diseases. The use of alternative flours to rice, maize, and their starches may improve the nutritional quality of gluten-free baked goods by reducing the glycaemic index. This work aimed at the formulation of satisfactory gluten-free biscuits by using underexploited flour mixes (from cereals, pseudocereals, and legumes), at the evaluation of their physical properties, starch digestibility and subsequent estimation of the glycaemic index. The presence of chickpea flour increased biscuit hardness and gluten-free flours darkened biscuit surface. The greatest differences in starch composition and its digestion were found between gluten-free samples and wheat-containing control. Experimental biscuits had also a lower predicted glycaemic index compared to commercial products, whereas experimental formulations presented similar values between each other. Consumers' acceptance and sensory profiling by Check All That Apply questionnaire were carried out. All formulations but one were above the acceptance threshold (50); crumbliness and easiness to swallow were drivers of acceptance, whereas sandiness exerted a negative impact on liking score.

Use of Underexploited Flours for the Reduction of Glycaemic Index of Gluten-Free Biscuits: Physicochemical and Sensory Characterization

Roberta Tolve;
2021-01-01

Abstract

The type and the amount of starch present in bakery products affect their glycaemic index. The control of glycaemic index in our diet can be relevant to reduce the risk of type 2 diabetes and heart diseases. The use of alternative flours to rice, maize, and their starches may improve the nutritional quality of gluten-free baked goods by reducing the glycaemic index. This work aimed at the formulation of satisfactory gluten-free biscuits by using underexploited flour mixes (from cereals, pseudocereals, and legumes), at the evaluation of their physical properties, starch digestibility and subsequent estimation of the glycaemic index. The presence of chickpea flour increased biscuit hardness and gluten-free flours darkened biscuit surface. The greatest differences in starch composition and its digestion were found between gluten-free samples and wheat-containing control. Experimental biscuits had also a lower predicted glycaemic index compared to commercial products, whereas experimental formulations presented similar values between each other. Consumers' acceptance and sensory profiling by Check All That Apply questionnaire were carried out. All formulations but one were above the acceptance threshold (50); crumbliness and easiness to swallow were drivers of acceptance, whereas sandiness exerted a negative impact on liking score.
2021
Gluten free
Biscuits
Starch digestibility
Predicted glycaemic index
CATA
File in questo prodotto:
File Dimensione Formato  
Use of Underexploited Flours for the Reduction of Glycaemic Index of Gluten-Free Biscuits- Physicochemical and Sensory Characterization.pdf

solo utenti autorizzati

Licenza: Accesso ristretto
Dimensione 752.84 kB
Formato Adobe PDF
752.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1074066
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact