Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law.
Collision avoidance and dynamic modeling for wheeled mobile robots and industrial manipulators
Federico Vesentini
;Luca Di Persio;Riccardo Muradore
2022-01-01
Abstract
Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law.File | Dimensione | Formato | |
---|---|---|---|
PhD Thesis (Federico Vesentini).pdf
accesso aperto
Descrizione: Tesi di dottorato (XXXIV ciclo) incentrata su due argomenti principali: Collision Avoidance e Dynamic Modelling per robot mobili e manipolatori.
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
8.86 MB
Formato
Adobe PDF
|
8.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.