Intraoperative tissue identification is important and frequently required in modern surgical approaches for guiding operation. For this purpose, a novel robot assisted sensing system equipped with a wide-band impedance spectroscope is developed. Without introducing an external sensor probe to the operating site, the proposed system incorporates two robotic instruments for electric current excitation and voltage measurement. Based on the developed measurement strategy and algorithm, the electrical conductivity and permittivity of the tissue region can be calculated. Experiments based on simulation, salines and ex-vivo tissue phantoms are conducted. The experimental results demonstrate that the proposed system has a high measurement accuracy (≥97%). Through a simple support vector machine, a 100% accuracy is achieved for identifying five different tissues. Given the convincing results, the presented sensing system shows great potential in offering effective, fast, and safe tissue inspection.
Robot assisted electrical impedance scanning for tissue bioimpedance spectroscopy measurement
Dall’Alba, Diego
;Fiorini, Paolo;
2022-01-01
Abstract
Intraoperative tissue identification is important and frequently required in modern surgical approaches for guiding operation. For this purpose, a novel robot assisted sensing system equipped with a wide-band impedance spectroscope is developed. Without introducing an external sensor probe to the operating site, the proposed system incorporates two robotic instruments for electric current excitation and voltage measurement. Based on the developed measurement strategy and algorithm, the electrical conductivity and permittivity of the tissue region can be calculated. Experiments based on simulation, salines and ex-vivo tissue phantoms are conducted. The experimental results demonstrate that the proposed system has a high measurement accuracy (≥97%). Through a simple support vector machine, a 100% accuracy is achieved for identifying five different tissues. Given the convincing results, the presented sensing system shows great potential in offering effective, fast, and safe tissue inspection.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0263224122003748-main.pdf
Open Access dal 01/04/2023
Tipologia:
Documento in Post-print
Licenza:
Accesso ristretto
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.