We give criteria for subcategories of a compactly generated algebraic triangulated category to be precovering or preenveloping. These criteria are formulated in terms of closure conditions involving products, coproducts, directed homotopy colimits and further conditions involving the notion of purity. In particular, we provide sufficient closure conditions for a sub-category of a compactly generated algebraic triangulated category to be a torsion class. Finally we explore applications of the previous results to the theory of recollements.

DEFINABILITY AND APPROXIMATIONS IN TRIANGULATED CATEGORIES

Laking, R.
;
Vitória, J.
2020-01-01

Abstract

We give criteria for subcategories of a compactly generated algebraic triangulated category to be precovering or preenveloping. These criteria are formulated in terms of closure conditions involving products, coproducts, directed homotopy colimits and further conditions involving the notion of purity. In particular, we provide sufficient closure conditions for a sub-category of a compactly generated algebraic triangulated category to be a torsion class. Finally we explore applications of the previous results to the theory of recollements.
2020
precover
preenvelope
definable subcategory
torsion pair
t-structure
recollement
File in questo prodotto:
File Dimensione Formato  
Definability and approximations for triangulated categories_c1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 512.71 kB
Formato Adobe PDF
512.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1056439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact