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Abstract. We give criteria for subcategories of a compactly generated algebraic triangulated cate-
gory to be precovering or preenveloping. These criteria are formulated in terms of closure conditions
involving products, coproducts, directed homotopy colimits and further conditions involving the no-
tion of purity. In particular, we provide sufficient closure conditions for a subcategory of a compactly
generated algebraic triangulated category to be a torsion class. Finally we explore applications of the
previous results to the theory of recollements.

1. Introduction

Given a subcategory X of a given category C, it is natural to ask whether every object of C admits
morphisms from X satisfying a universal property (being terminal) among all morphims from X . This is
the notion of X being precovering and the notion of preenveloping is dual. For example, modules over a
ring always admit projective precovers and injective envelopes; these are universal maps to/from a given
module from/to the distinguished classes of projective/injective modules. Approximation theory studies
the subcategories X that can provide such approximation maps to all objects in the category. Some
subcategories providing good approximations arise through the notion of torsion pairs and definability.

Torsion pairs in abelian or triangulated categories are special pairs of subcategories, one of them
being precovering and the other preenveloping. In triangulated categories such pairs assume particular
relevance when they ‘behave well’ with respect to the shift functor: these torsion pairs are called t-
structures or co-t-structures. Areas where these torsion pairs play a particularly important role include
silting/tilting theory (e.g. [30, 29, 31]); the study of derived equivalences in algebra and geometry (e.g.
[48] and references therein); and the study of Bridgeland’s stability conditions ([12]).

Definable subcategories of a module category ([15]) have their origins in the model theory of modules
and are well-known to have good approximation-theoretic properties. Indeed, they are both precovering
and preenveloping ([16]). In fact, a subcategory is precovering if it is closed under coproducts and pure
quotients ([24]) and it is preenveloping if it is closed under products and pure subobjects ([49]). The
notion of definable subcategories of (compactly generated) triangulated categories has appeared in [33],
and are known to be preenveloping ([5]), but they are generally less well-understood.

For categories of modules over a ring, a subcategory is a torsion class if and only if it is closed under
coproducts, quotients and extensions ([17]), and a subcategory is definable if and only if it is closed
under products, pure subobjects and pure quotients ([15] and Theorem 2.4(1)). In this paper we provide
analogous closure conditions for subcategories of triangulated categories that yield good approximation-
theoretic properties. However, in triangulated categories all monomorphisms and epimorphisms split, and
so we are lacking a useful notion of subobject and quotient object. We approach this deficit by considering
the class of compactly generated algebraic triangulated categories, which include, in particular, derived
categories of rings. The assumption that T is compactly generated allows us to deal with pure subobjects
and pure quotient objects. We summarise our main results as follows.

Theorem. Let T be a compactly generated algebraic triangulated category and X a subcategory of T .
Then the following statements hold.

(1) If X is closed under coproducts and pure quotients, then X is precovering. If X is closed under
products and pure subobjects, then X is preenveloping;

(2) The subcategory X is definable in T if and only if it is closed under pure subobjects, products and
pure quotients. In particular, definable subcategories are both precovering and preenveloping.

(3) If X is closed under coproducts, extentions and pure quotients, then X is a torsion class in T .
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In order to obtain (2) we make reference to a recent characterisation of definable subcategories when
T is the underlying category of a strong and stable derivator ([37]): a subcategory is definable if and only
if it is closed under products, pure subobjects and directed homotopy colimits. The assumption that T
is both compactly generated and algebraic means that T is equivalent to D(A) for a small differential
graded (dg, for short) category A ([27]). In particular, this means that T is equivalent to the homotopy
category of a nice model structure and so we may apply results from the setting of strong and stable
derivators ([20]). However, it is not clear that the notion of ‘closure under directed homotopy colimits’
is independent of the choice of A. Thus the second part of the theorem above should be seen as a
simplification of [37] in the case where T is algebraic, which also relieves us of the choice of derivator.

The results summarised above have direct implications in other lines of research. Indeed, for example,
our techniques make explicit a reformulation (already implicit in [34]) of the Telescope Conjecture for a
compactly generated triangulated category in the case where the category is also algebraic.

The structure of the paper is as follows. Section 2 consists of some preliminaries concerning approxi-
mation theory, compactly generated triangulated categories and derived categories of small dg categories.
In Section 3 we consider compactly generated algebraic triangulated categories, which can be realised
both as the homotopy category of an abelian model category and the stable category of a Frobenius
exact category. We recall the background that we require on these topics and then use it to prove some
preliminary results on closure conditions for subcategories of such categories. In Section 4 we use those
closure conditions to obtain approximation-theoretic properties for certain subcategories. In Section 5
we turn to the topic of torsion pairs in triangulated categories and we formulate sufficient conditions for
a subcategory to be a torsion class. Finally, Section 6 discusses applications of the previous sections to
recollements and the Telescope Conjecture.

Notation and conventions. By ‘subcategory’ of a given category, we mean a ‘full and strict
subcategory’. Therefore, all subcategories considered are determined by the objects lying in them, and
we often refer to the subcategory as the class of its objects. Given a category X and a subcategory S
of X , we denote by S⊥ the subcategory of all X in X such that HomX (S,X) = 0, for all S in S. If a
subcategory Y is contained in S⊥ then we write HomX (S,Y) = 0. Given a small preadditive category X ,
we denote by Mod(X ) the abelian category of contravariant additive functors from X to the category of
abelian groups Mod(Z). Finally, given C a subcategory of an additive category X , we denote by Add(C)
the subcategory of X whose objects are summands of direct sums of objects in C.

2. Preliminaries

In this section we begin with some definitions and statements that we will need later. In Subsection 2.1
we briefly recall some known results about approximation theory in locally finitely presented categories.
Following this, in Subsection 2.2 we define compactly generated triangulated categories and concentrate
in particular on the theory of purity therein. Subsection 2.3 consists of a short overview of derived
categories of small dg categories.

2.1. Approximation theory. We begin with the following definitions from approximation theory.

Definition 2.1. A subcategory X of an additive category A is said to be
• precovering if for every object A in A there is X in X and a morphism f : X −→ A such that

HomA(X ′, f) is surjective for all X ′ in X . The map f is then called a X -precover of A.
• preenveloping if for every object A in A there is X in X and a morphism f : A −→ X such

that HomA(f,X ′) is surjective for all X ′ in X . The map f is then called a X -preenvelope of A.
• covering if every object A inA admits a right minimal X -precover (i.e. a X -precover f : X −→ A

such that any endomorphism g of X with the property that fg = f must be an automorphism).
• enveloping if every object A in A admits a left minimal X -preenvelope (i.e. a X -preenvelope
f : A −→ X such that any endomorphism g of X with the property that gf = f must be an
automorphism).

• coreflective if the inclusion functor of X into A admits a right adjoint.
• reflective if the inclusion functor of X into A admits a left adjoint.
• bireflective if the inclusion functor of X into A admits both a left and a right adjoint.

Applying the counit of the adjunction we have that that any coreflective subcategory is covering and,
dually, the unit of the adjunction shows that any reflective subcategory is enveloping.

We will consider sufficiently nice additive categories in which certain closure conditions on a subcat-
egory imply that it is precovering and/or preenveloping.
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Definition 2.2. Let A be a cocomplete additive category (i.e. an additive category with all colimits).
An object A in A is finitely presented if HomA(A,−) commutes with directed colimits. The category
A is said to be locally finitely presented if there is a set S of finitely presented objects such that
every object of A is a directed colimit of objects in S.

As A is a cocomplete additive category, we can also define the notions of pure subobject and pure
quotient. This definition will be used to express closure conditions in Theorem 2.4.

Definition 2.3. Let A be a cocomplete additive category. A morphism f : X −→ Y is said to be a
pure monomorphism (respectively, a pure epimorphism) in A if there is a directed system of split
monomorphisms (respectively, split epimorphisms) (fi : Xi −→ Yi)i∈I such that f = lim−→I

fi. An object
X is said to be a pure subobject (respectively, a pure quotient) of Y if there is a pure monomorphism
X −→ Y (respectively, a pure epimorphism X −→ Y ).

The following theorem holds more generally. However, for simplicity, we restrict its scope to the
setting in Definition 2.2.

Theorem 2.4. Let X be a subcategory of a locally finitely presented additive category A.
(1) If X is closed under pure quotients, then it is closed under directed colimits if and only if it is

closed under coproducts.
(2) [36, Theorem 4] If X is closed under pure quotients and coproducts (or, equivalently, under pure

quotients and directed colimits), then X is precovering.
(3) [36, Proposition 5] If A admits products and if X is closed under pure subobjects and products,

then X is preenveloping.

Proof. We discuss only item (1). Every coproduct is a directed colimit and, in a locally finitely presented
category, it is easy to see that every directed colimit is a pure quotient of a coproduct. �

Remark 2.5. As observed in [36, 2], in locally finitely presented additive category, any subcategory closed
under directed colimits and pure subobjects is also closed for pure quotients. Hence, if X is a subcategory
of a locally finitely presented category A closed under directed colimits and pure subobjects, then X is
precovering.

In nice enough categories, we also get that a precovering class closed under directed colimits is, in fact,
covering. Once again, taking into account our purposes, we simplify the setting in which the following
theorem holds. Recall that a category is said to be well-powered if the subobjects of any given object
form a set.

Theorem 2.6 ([18, Section 7]). Let A be a cocomplete and well-powered abelian category and X a
subcategory. If X is precovering in A and X is closed under directed colimits, then X is covering in A.

Examples of cocomplete well-powered abelian categories abound. In particular, any Grothendieck
category satisfies these properties (see, for example, [52, Chapter IV, Proposition 6.6]).

Corollary 2.7. Let A be a locally finitely presented abelian category and X a subcategory. If X is closed
under pure quotients and coproducts, then it is covering.

Proof. By [14, Section 2.4], any locally finitely presented abelian category is a Grothendieck category
and therefore well-powered. This is then a direct combination of Theorem 2.4 and Theorem 2.6. �

If T is a triangulated category, there are also some sufficient conditions guaranteeing that certain
precovering (respectively, preenveloping) subcategories are covering (respectively, enveloping).

Definition 2.8. A subcategory U of T is suspended (respectively, cosuspended) if it is closed under
summands and extensions, and U [1] is contained in U (respectively, U [−1] is contained in U). Moreover,
a subcategory U is triangulated if it is both suspended and cosuspended.

The following theorem is a direct consequence of the arguments presented in [40, Proposition 1.4] (see
also Theorem 5.9).

Theorem 2.9 ([40, Proposition 1.4]). Let U be a subcategory of a triangulated category T .
(1) If U is suspended, then U is precovering if and only if U is covering, and if and only if U is

coreflective.
(2) If U is cosuspended, then U is preenveloping if and only if U is enveloping, and if and only if U

is reflective.
(3) If U is a triangulated subcategory, then U is both precovering and preenveloping if and only if U

is both covering and enveloping, and if and only if U is bireflective.
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2.2. Compactly generated triangulated categories. We will consider triangulated categories that
have a nice set of generators.

Definition 2.10. If T is a triangulated category with coproducts, then
• an object X in T is compact if HomT (X,−) commutes with direct sums;
• T is said to be compactly generated if the subcategory of compact objects, denoted by T c, is

skeletally small and generates T (i.e. if HomT (C,X) = 0 for all C compact, then X ∼= 0).

Compactly generated triangulated categories admit a pure-exact structure, which we discuss in the
following. We consider the category Mod(T c) of additive functors (T c)op −→ Mod(Z). This is an abelian
category with directed colimits and, in fact, it is a locally finitely presented (even locally coherent)
Grothendieck category. We denote by y : T −→ Mod(T c) the functor sending an object X in T to the
functor yX := HomC(−, X)|T c .

Definition 2.11. A triangle in a compactly generated triangulated category T

∆: L
f // M

g // N // L[1]

is said to be a pure triangle if the sequence

y(∆): yL
yf // yM

yg // gN

is a short exact sequence in Mod(T c). In that case we say that f is a pure monomorphism, g is a
pure epimorphism, L is a pure subobject of M and N is a pure quotient of M . Moreover, an
object L is pure-injective if every pure triangle of the form ∆ splits. An object N is pure-projective
if every pure triangle of the form ∆ splits.

It is well-known (see, for example, [9, Sections 8 and 11]) that the subcategory of pure-projective
objects in a compactly generated triangulated category coincides with the additive closure of the compact
objects Add(T c). The following lemma provides a useful method to construct pure triangles.

Lemma 2.12 ([33, Lemma 2.8]). Let T be compactly generated. A triangle ∆ in T is pure if and only if
there is a directed system of split triangles (∆i)i∈I such that the short exact sequence y∆ coincides with
the short exact sequence lim−→I

y∆i.

This lemma shows that indeed the notions of pure triangle in T and pure-exact sequence in the
locally finitely presented category Mod(T c) are naturally compatible. Note that, as a consequence of the
lemma above, a morphism f in T is a pure monomorphism if and only if yf is a pure monomorphism
in Mod(T c). Dually, it also follows that a morphism g in T is a pure epimorphism if and only if yg is a
pure epimorphism in Mod(T c).

2.3. Derived categories of dg categories. Among all compactly generated triangulated categories,
we will be particularly interested in those that are equivalent to the derived category D(A) of a small dg
category A. If K is a commutative ring, then a K-linear category A is a dg category if it is enriched
over the category C(K) of chain complexes over K. Since we will not directly make use of this enriched
structure, we refer the reader to the following example for an intuitive idea of what this means and to
sources such as [35, Section 6] and [27] for a detailed account.

Example 2.13. Let K be a commutative ring. We will describe a dg category Cdg(K) with the same
objects as C(K). For any pair X,Y of objects in C(K) we must define a chain complex Hom(X,Y ). For
n ∈ Z, we take

Hom(X,Y )n :=
∏
p∈Z

HomK(Xp, Y p+n)

and the differential is defined to be dn(fp) := dY ◦fp− (−1)nfp+1 ◦dX where fp is in HomK(Xp, Y p+n).

The derived category D(A) is constructed as a localisation of an abelian category C(A), which is a
generalisation of the category of chain complexes over a ring. For the details of the definition of C(A)
we refer to [27, Section 2.1]. The category D(A) is obtained from C(A) by formally inverting a class W
of morphisms in C(A) called quasi-isomorphisms. As one might expect, the morphisms in W generalise
the quasi-isomorphisms in the category of chain complexes over a ring; an exact definition may be found
in [27, Section 4.1].
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3. Compactly generated algebraic triangulated categories

A famous theorem of Keller ([27, Subsection 4.1 and Theorem 4.3]) states that the class of derived
categories of small dg categories coincides with the class of stable categories of Frobenius exact categories
that are compactly generated. These categories are called compactly generated algebraic triangulated
categories and, in this section, we explore their properties from these two distinct points of view.

The process of formally inverting the quasi-isomorphisms in C(A) for a small dg category A may be
done within the framework of model categories and we present this point of view in Subsection 3.1. The
category D(A) may also be realised as the stable category of a Frobenius exact category and there is
a close relationship between the torsion pairs in D(A) and the cotorsion pairs in the Frobenius exact
category. More details of this construction are given in Subsection 3.2. It is the interplay between these
two structures underlying the category D(A) that will allow us to develop approximation theory in the
later sections.

3.1. Compactly generated algebraic triangulated categories as homotopy categories. One
way of seeing that the localisation of C(A) at W exists is to observe that there is a model structure
on C(A) such that the quasi-isomorphisms coincide with the weak equivalences. In particular, we will
consider the so-called projective model structure on C(A) described in the following proposition. We
refer the reader to [23, 25] for more details on the theory of model categories. Given a model categoryM
we will denote its homotopy category by Ho(M). For a proof of the following well-known proposition,
see [7, Proposition 1.3.5] and references therein.

Proposition 3.1. Let A be a small dg category. There exists a model structure on C(A) such that the
weak equivalences are the quasi-isomorphisms and every object is fibrant and it is uniquely determined
by these properties. The homotopy category of this model structure is equivalent to D(A).

Notation 3.2. We will fix the following notation with respect to the projective model structure.
• We denote the associated localisation functor by π : C(A)→ D(A).
• We will denote the class of weak equivalences (i.e. quasi-isomorphisms) by W.
• We will denote the class of cofibrant objects by C (in [27] Keller refers to the objects in C as
objects with property (P)).

By [53, Lemma 2.12], the category C(A) is a locally finitely presented Grothendieck category with
enough projective objects. In Section 4 we will prove an analogue of Theorem 2.4 for D(A). The
strategy will be to determine which subcategories X of D(A) have a preimage π−1(X ) in C(A) satisfying
the closure conditions specified in Theorem 2.4. We, therefore, need to discuss the products, coproducts
and directed colimits (or suitable replacements of these) in both C(A) and D(A).

It is well-known ([38, Proposition A.2.8.2]) that the model structure in C(A) described in the propo-
sition above induces model structures in the category of functors from a small category S to C(A). We
denote this category, usually called the category of S-diagrams in C(A), by C(A)S and the corresponding
localisation functor by πS : C(A)S −→ Ho(C(A)S).

Remark 3.3. It is easy to see that if S is a discrete category (i.e. if the only morphisms of S are identities
on objects), then C(A)S is nothing but the product, indexed by S, of copies of the category C(A). In
that case it then follows that the homotopy category for the induced model structure is nothing but the
product of the respective homotopy categories, i.e. Ho(C(A)S) ' Ho(C(A))S ' D(A)S . However, this
equivalence does not generally hold for small categories which are not discrete.

We recall that if F : M → N is a functor between model categories, then the total left derived
functor (respectively, the total right derived functor) is a functor LF : Ho(M) → Ho(N ) (respectively,
RF : Ho(M) → Ho(N )) - see [23, Section 8.4] for the definition of total derived functors. We consider
the following total derived functors:

• For each directed small category S (i.e. the set of objects of S is preordered by its morphisms and
every finite subset has an upper bound), we consider the total left derived functor of the directed
colimit functor lim−→S

: C(A)S → C(A), and we denote it by L lim−→S
: Ho(C(A)S) → Ho(C(A)) '

D(A). This derived functor turns out to be left adjoint to the natural diagonal (or constant)
functor δS : Ho(C(A)) ' D(A) −→ Ho(C(A)S) and we will, therefore, refer to L lim−→S

as the
directed homotopy colimit functor.
• For each discrete category S, we consider the total right derived functor of the product functor∏

: C(A)S → C(A), which yields a functor R
∏

: D(A)S → D(A). This derived functor is right
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adjoint to the natural diagonal functor δS : Ho(C(A)) ' D(A) −→ Ho(C(A)S) ∼= D(A)S and,
therefore, it coincides with the product functor in D(A) ([25, Example 1.3.11]).

• For each discrete category S, we consider the total left derived functor of the coproduct functor∐
: C(A)S → C(A), which yields a functor L

∐
: D(A)S → D(A). This derived functor is left

adjoint to the natural diagonal functor δS : Ho(C(A)) ' D(A) −→ Ho(C(A)S) ∼= D(A)S and,
therefore, it coincides with the coproduct functor in D(A) ([25, Example 1.3.11]).

In the same vein as [51, Lemma 7.1(4)] we observe that the exactness of (co)products and directed
colimits in C(A) allow for an easy computation of (co)products and directed homotopy colimits in D(A).

Proposition 3.4. Let A be a small dg category and let S be a small category.

(1) If S is directed and X is an object of C(A)S, then we have L lim−→S
πSX ∼= π

(
lim−→S

X
)
.

(2) If S is discrete and X = (Xs)s∈S is an object of C(A)S, then we have
∏

s∈S πXs
∼= π

(∏
s∈S Xs

)
.

(3) If S is discrete and X = (Xs)s∈S is an object of C(A)S, then we have
∐

s∈S πXs
∼= π

(∐
s∈S Xs

)
.

Proof. This result is well-known, but we sketch an argument along the lines of [54, Proposition 2.2(2)].
We focus on statement (1), since the proof of statements (2) and (3) are analogous. Let S be a directed
small category. First we observe that, since lim−→S

is exact in Mod(Z), it commutes with the cohomology
functor in C(A). This implies that weak equivalences (i.e. quasi-isomorphisms) are preserved under
directed colimits. The statement then follows from [21, Corollary 7.2.5]. �

By [51, Proposition 5.4], we know that y sends directed homotopy colimits in T := D(A) to directed
colimits in Mod(T c). We therefore obtain the following corollary of Proposition 3.4. In fact, it was
proved directly in [42, Lemma 6.3(2)].

Corollary 3.5. Let A be a small dg category. Denote T := D(A) and let y : T → Mod(T c) be the functor
defined in Section 2.2. Then the composition y ◦ π : C(A) −→ Mod(T c) preserves directed colimits.

The upshot of Proposition 3.4 is that we can transfer closure conditions between C(A) and D(A). In
order to make this precise, we will need the following definitions.

Definition 3.6. Let A be a small dg category and X a subcategory of D(A).
(1) The preimage of X in C(A) is the subcategory

π−1(X ) := {X ∈ C(A) | π(X) ∈ X}.

(2) The subcategory X is closed under directed homotopy colimits if for every directed small
category S and every object X = (Xs)s∈S in C(A)S such that π(Xs) is in X for every s in S, we
have that L lim−→S

πSX is in X .

Corollary 3.7. Let A be a small dg category and let X be a subcategory of D(A). The following
statements hold.

(1) X is closed under products if and only if π−1(X ) is closed under products.
(2) X is closed under coproducts if and only if π−1(X ) is closed under coproducts.
(3) X is closed under directed homotopy colimits if and only if π−1(X ) is closed under directed

colimits.

The following lemma indicates that the property of being closed under pure subobjects or pure quo-
tients can also be transferred from D(A) to C(A).

Lemma 3.8. Let A be a small dg category and let X be a subcategory of D(A). If X is closed under
pure quotients (respectively, pure subobjects) in D(A), then so is its preimage π−1(X ).

Proof. We prove the statement for pure quotients, since the other statement can be proved analogously.
Let M be an object in π−1(X ) and suppose that there is a pure epimorphism f : M −→ N in the
locally finitely presented category C(A). Then we have that f = lim−→I

fi for some directed system of split
epimorphisms (fi)i∈I in C(A). Since, by Corollary 3.5 the composition y ◦ π commutes with directed
colimits, it follows that yπ(f) = lim−→I

yπ(fi). Since π(fi) are split epimorphisms in D(A), from Lemma
2.12 we have that π(f) is a pure epimorphism in T and, thus, π(N) must also lie in X . Hence N lies in
π−1(X ) as wanted. �

Now we can prove the analogous statement to Theorem 2.4(1).
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Proposition 3.9. Let A be a small dg category and let X be a subcategory of D(A) that is closed under
pure quotients. Then the subcategory X is closed under directed homotopy colimits if and only if it is
closed under coproducts.

Proof. Since every coproduct is a directed homotopy colimit, it remains to show that if X that is closed
under coproducts then it is also closed under directed homotopy colimits. By Lemma 3.8, the subcategory
π−1(X ) of C(A) is closed under pure quotients and it is also clearly closed under coproducts. By Theorem
2.4(1), it follows that π−1(X ) is closed under directed colimits and, therefore, by Corollary 3.7, we
conclude that X is closed under directed homotopy colimits. �

3.2. Compactly generated algebraic triangulated categories as stable categories. The stable
category F of a Frobenius exact category F is always triangulated [22, Theorem 2.6] and many, if not all,
triangulated categories arising in algebra are of this form. This therefore motivates the next definition.

Definition 3.10. A triangulated category is called algebraic if it is equivalent to the stable category
of a Frobenius exact category.

We will make use of the following Frobenius exact category yielding D(A) as its stable category.

Proposition 3.11 (see, for example, [10, Theorem VIII.4.2]). Let A be a small dg category and let C
be the subcategory of C(A) consisting of cofibrant objects in the projective model structure. The following
statements hold.

(1) The subcategory C with the exact structure inherited from the abelian structure on C(A) is a
Frobenius exact category.

(2) The restriction π|C : C −→ D(A) induces an equivalence of categories between C and D(A).

We finish this section with a brief account of the connection between the torsion pairs in C and the
complete cotorsion pairs in C . This will prove useful in Section 5.

Definition 3.12. A pair of subcategories (U ,V) in a triangulated category T is called a torsion pair if
(1) U and V are closed under summands;
(2) HomT (U ,V) = 0;
(3) For any object X in T there are objects U in U , V in V and a triangle U −→ X −→ V −→ U [1].

If (U ,V) is a torsion pair in T , then we say that U is a torsion class and V is a torsionfree class.

It follows easily from the definition that V = U⊥ and U = ⊥V. If T is an algebraic triangulated
category, then torsion pairs in T are in bijection with certain pairs of subcategories of F . Let us recall
the definition of a complete cotorsion pair in an exact category.

Definition 3.13. Let F be an exact category. We say that a pair of subcategories (M,N ) of F is a
complete cotorsion pair if the following statements hold.

• N = Ker Ext1F (M,−) andM = Ker Ext1F (−,N ).
• M is special precovering, i.e. for every object X in F there are objects M1 in M, N1 in N

and a conflation

0 // N1
// M1

f // X // 0.

• N is special preenveloping, i.e. for every object X in F there are objects N2 in N , M2 inM
and a conflation

0 // X
g // N2

// M2
// 0.

From the above conflations, it is easy to see that, indeed, f is aM-precover and g is a N -preenvelope.

Example 3.14. The well-known Wakamatsu’s Lemma states that, given an extension-closed precovering
subcategory X of an abelian category A such that X -precovers are epimorphisms, if X is covering then
it is special precovering. In particular, if A is a locally finitely presented abelian category with enough
projectives and X is a subcategory of A containing the projective objects and closed under extensions,
directed colimits and pure quotients, then by Corollary 2.7 and Wakamatsu’s Lemma, X is special
precovering in A.

Example 3.15. Abelian model structures are intimately related with cotorsion pairs (see [26]). In
particular, the projective model structure in C(A) from Proposition 3.1 guarantees the existence of a
cotorsion pair (C ,W0), where C is the subcategory of cofibrant objects and W0 is the category of trivial
objects (i.e. those which are quasi-isomorphic to zero or, in other words, acyclic). Moreover, this cotorsion
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pair is hereditary, i.e. ExtnC(A)(C,W ) = 0 for all n > 0 and for all C in C and W inW0 (see, for example,
[7, Corollary 1.1.12]).

Theorem 3.16 ([50, Proposition 3.3]). Let T be the stable category of a Frobenius exact category F and
let φ : F −→ F = T denote the canonical functor. There is a bijection between complete cotorsion pairs
in F and torsion pairs in T given by the assignment (M,N ) 7→ (φM, (φN )[1]).

4. Approximation theory in algebraic triangulated categories

In this section we discuss sufficient closure conditions for a subcategory of a compactly generated
algebraic triangulated category to be precovering or preenveloping. The trick is to lift those closure
conditions to a locally finitely presented category and use the results on approximation theory available
there. All the results in this section will be stated for a compactly generated algebraic triangulated
category T but we wish to make reference to some notion of homotopy colimit in T . We therefore make
the following definition.

Definition 4.1. Let T be a compactly generated algebraic triangulated category. We will say that
a subcategory X is closed under homotopy colimits if there exists a small dg category A and an
equivalence F : T → D(A) such that F (X ) is closed under homotopy colimits in D(A).

The following theorem is a triangulated analogue of Theorem 2.4.

Theorem 4.2. Let X be a subcategory of a compactly generated algebraic triangulated category T .
(1) If X is closed under pure quotients and coproducts, then X is precovering.
(2) If X is closed under pure subobjects and products, then X is preenveloping.

Proof. (1) Since there exists a small dg category A such that T ' D(A), it suffices to prove (1) for
D(A). So let X be a subcategory of D(A) that is closed under pure quotients and coproducts. Let
π−1(X ) denote the preimage of X in C(A) (as in Definition 3.6). Then, by Corollary 3.7 and Lemma 3.8,
the subcategory π−1(X ) is closed under coproducts and pure quotients. Thus, it follows from Theorem
2.4(2) that π−1(X ) is precovering in C(A). We use this fact to show that X is precovering in D(A).

Let π(M) be an arbitrary object in D(A) and consider a π−1(X )-precover p : X →M of M in C(A).
We show that π(p) : π(D) → π(M) is a X -precover. Let f : π(E) → π(M) be any morphism from
an object in X to π(M) and let c : CE → E be a cofibrant replacement of E. Note that π(c) is an
isomorphism and so f factors through π(p) if and only if f ◦ π(c) factors through π(p). Moreover, the
morphism f ◦ π(c) is of the form π(g) for some g : CE →M because CE is cofibrant. Finally, we observe
that CE is contained in π−1(X ) and so g factors through p. Thus we have that π(g) = f ◦ π(c) (and
therefore f) factors through π(p) as required.

(2) The proof is very similar to (1), the only significant difference being that to build a X -preenvelope
of an object π(M) in D(A) we should consider a π−1(X )-preenvelope of a cofibrant replacement CM of
M . Indeed, if p : CM −→M is such a cofibrant replacement and f : CM −→ X is a π−1(X )-preenvelope
of CM , then the composition π(f) ◦ π(p)−1 can be shown as above to be a X -preenvelope of π(M). �

Corollary 4.3. If X is closed under pure quotients and directed homotopy colimits, then X is precovering.

Proof. This is immediate from Theorem 4.2 and Proposition 3.9. �

Remark 4.4. Using Remark 2.5, it can be seen that a subcategory X of a compactly generated algebraic
triangulated category T that is closed under directed homotopy colimits and pure subobjects is also
closed under pure quotients. Hence, such a subcategory X is also precovering.

Example 4.5. Consider an object X in a compactly generated algebraic triangulated category T . Let
PGen(X) denote the subcategory of T whose objects are pure quotients of coproducts of X. Dually, let
PCogen(X) denote the subcategory of T whose objects are pure subobjects of products of X. Using the
fact that products and coproducts preserve pure epimorphisms and pure monomorphisms, it then follows
from Theorem 4.2 that PGen(X) is precovering and that PCogen(X) is preenveloping.

Note that, in view of Remark 4.4, any subcategory closed under pure subobjects, directed homotopy
colimits and products will be simultaneously precovering and preenveloping. It turns out that these
closure conditions actually characterise an important type of subcategories.
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Definition 4.6. Let T be a compactly generated triangulated category. An additive (covariant) functor
F : T −→ Mod(Z) is said to be coherent if there is an exact sequence

HomT (Y,−)
HomT (f,−) // HomT (X,−) // F // 0

with f : X −→ Y a map in T c. A subcategory X of T is said to be definable if there is a set of coherent
functors (Fi)i∈I such that Fi(X) = 0 for all i in I if and only if X lies in X .

The following theorem was originally stated in the more general setting of stable derivators ([37,
Theorem 3.11]). Derived categories of small dg categories lie at the base of a stable derivator since they
are homotopy categories of nice model categories ([20, Proposition 1.30]). We may, therefore, restate the
theorem in our setting and furthermore, we use Proposition 3.9 to ‘simplify’ the original statement.

Theorem 4.7. The following are equivalent for a subcategory X of a compactly generated algebraic
triangulated category.

(1) X is definable;
(2) X is closed under pure subobjects, products and directed homotopy colimits.
(3) X is closed under pure subobjects, products and pure quotients.

Proof. (1) ⇔ (2): This statement holds in our setting by [37, Theorem 3.11].
(2)⇒ (3): It follows from Remark 4.4 that if X is closed under pure subobjects and directed homotopy

colimits, then it is also closed under pure quotients.
(3)⇒ (2): Since any coproduct is a pure subobject of the corresponding product, if X is closed under

pure subobjects and products it is then closed under coproducts as well. If additionally X is closed under
pure quotients, then by Proposition 3.9 it is also closed under directed homotopy colimits. �

As expected, definable subcategories therefore have nice approximation-theoretic properties.

Corollary 4.8. If X is a definable subcategory of a compactly generated algebraic triangulated category,
then X is precovering and preenveloping.

Proof. This is an immediate consequence of Theorem 4.7 and Theorem 4.2. �

Remark 4.9. Note that it was also shown in [5, Proposition 4.5] that definable subcategories are preen-
veloping in any compactly generated triangulated category.

Using Theorem 2.9, we provide sufficient conditions for a subcategory to be covering or enveloping.

Corollary 4.10. Let X be a subcategory of a compactly generated algebraic triangulated category.
(1) If X is suspended and closed under coproducts and pure quotients, then X is covering.
(2) If X is cosuspended and closed under products and pure subobjects, then X is enveloping.

In particular, if X is triangulated and definable, then it is both covering and enveloping.

Proof. Statements (1) and (2) follow from Theorem 2.9 and Theorem 4.2. The last statement follows
from Theorem 4.7, combining (1) and (2) (or, alternatively, from Theorem 2.9 and Corollary 4.8). �

Remark 4.11. Suspended subcategories closed under coproducts are also closed under directed homotopy
colimits. This is a conjugation of [53, Proposition 2.4] and [46, Theorem 7.13]. It then follows Remark
4.4 and part (1) of the corollary above that if X is suspended and closed under coproducts and pure
subobjects, then X is covering.

Also by Theorem 2.9, subcategories satisfying the conditions of the corollary above are part of certain
torsion pairs (namely t-structures). That is the topic of our next section.

5. Torsion pairs in algebraic triangulated categories

Typical examples of (pre)covering and (pre)enveloping subcategories of triangulated categories occur
in torsion pairs (see Definition 3.12). Clearly, every torsion class is precovering and every torsionfree
class is preenveloping. In the next theorem we will make use of the results of Section 4, as well as the
correspondence given by Theorem 3.16 in order to establish sufficient conditions, via closure properties,
for a subcategory to be a torsion class. We will need the following lemma.

Lemma 5.1. Let F be an exact category with enough injectives andM a subcategory of F . Then there
is a complete cotorsion pair (M,N ) if and only if M is a special precovering and idempotent complete
subcategory of F .
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Proof. It is clear from the definition that a subcategory M which is part of a complete cotorsion pair
(M,N ) must be special precovering and idempotent complete. We prove the converse statement. Indeed,
let M be special precovering and idempotent complete, and consider the class N := Ker Ext1F (M,−).
We must show thatM = Ker Ext1F (−,N ). ClearlyM is contained in Ker Ext1F (−,N ). Suppose X is
in Ker Ext1F (−,N ) and let

0 // N1
// M1

f // X // 0

be a conflation of F , where f is a special precover of X. Then, since Ext1F (X,N1) = 0, the sequence is
split and so X lies inM.

Finally we must obtain a special N -preenvelope for each object Y in F . Since F has enough injectives,
we may apply Salce’s Lemma (see, for example, [19, Lemma 2.2.6]) to obtain a conflation

0 // Y
g // N2

// M2
// 0

with M2 inM and N2 in N . �

We can now prove the main theorem of this section.

Theorem 5.2. Let T be a compactly generated algebraic triangulated category. Then every subcategory
X that is closed under extensions, pure quotients and coproducts is a torsion class. In particular, every
definable extension-closed subcategory is a torsion class.

Proof. Let A be a small dg category such that T = D(A) for which the subcategory X of T satisfies the
closure conditions above. Let C be the Frobenius exact subcategory of C(A) as in Proposition 3.11. By
Theorem 3.16, it is sufficient to show that there is a cotorsion pair (M,N ) in C such that π(M) = X . So
let π−1(X ) be the preimage of X (see Definition 3.6) and letM = C ∩π−1(X ). By [7, Proposition 1.1.15],
we have that π(M) = X .

We will show thatM is an idempotent complete and special precovering subcategory of C , and the
result then follows from Lemma 5.1. First, since X is closed under pure quotients, then so is π−1(X ) by
Lemma 3.8. In particular, π−1(X ) is closed under direct summands and, since C also has this property, it
follows that indeedM is idempotent complete. So it only remains to show thatM is special precovering
in C . We first prove that it is, in fact, a special precovering class in C(A). Note that, since π−1(X ) is
also closed under coproducts, it follows from Corollary 2.7 that it is covering in C(A) and, moreover, it
contains all the projective objects of C(A) (i.e. the trivial cofibrant objects in C(A)). Since π−1(X ) is
also extension-closed it then follows from Wakamatsu’s Lemma (see Example 3.14) that for each Z in
C(A) there is a short exact sequence

0 // K // X
f // Z // 0

with K in KerExt1C(A)(π
−1(X ),−) and X in π−1(X ). Moreover, the subcategory of cofibrant objects C

is part of a complete cotorsion pair (C ,W0), where W0 is the subcategory of C(A) formed by the acyclic
dg modules (see Example 3.15). Therefore there exists a short exact sequence

0 // W // C
g // X // 0

with W inW0 and C in C . We claim that f ◦ g : C −→ Z is a specialM-precover in C(A). First observe
that indeed C lies inM since π(C) ∼= π(X). It now suffices to check that Ext1C(A)(M,Ker (f ◦ g)) = 0.
The Snake Lemma guarantees that there is a short exact sequence

0 // W // Ker (f ◦ g) // K // 0.

Applying Ext1C(A)(M,−) to the sequence, with M inM, yields Ext1C(A)(M,Ker (f ◦ g)) = 0 as wanted.
Finally, since (C ,W0) is a hereditary cotorsion pair (see Example 3.15), C is closed under kernels of
deflations and Ker(f ◦ g) lies in C . Therefore, we have thatM is special precovering in C . �

Remark 5.3. It is well-known that in a well-powered cocomplete abelian category, torsion classes are
precisely those which are closed under extensions, coproducts and quotients. The theorem above provides
us with a triangulated analogue for the sufficiency of these closure conditions. Note, however, that while
torsion classes in abelian categories are covering, this is not necessarily the case in triangulated categories.

This theorem allows us to construct a series of torsion pairs.

Corollary 5.4. Let T be a compactly generated algebraic triangulated categories. Then the following
classes are torsion classes in T .
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(1) P⊥ for any pure-projective object P ;
(2) ⊥E for any pure-injective object E;
(3) PGen(P ) for a pure-projective object P satisfying HomT (P, P (I)[1]) = 0 for any set I.

Proof. (1) If P is pure-projective, then it is easy to see that P⊥ is closed under pure subobjects, pure
quotients and products. Therefore, by Theorem 4.7, P⊥ is definable. In particular it is also closed under
coproducts. Clearly P⊥ is extension-closed and, therefore, it satisfies the assumptions of Theorem 5.2.

(2) If E is pure-injective, then it is easy to see that ⊥E satisfies the assumptions of Theorem 5.2.
(3) By Example 4.5, the subcategory PGen(P ) is closed under coproducts and pure quotients. In

view of Theorem 5.2 it remains to show that it is extension-closed. First we observe that, since
HomT (P, P (I)[1]) = 0, we in fact have that HomT (P,M [1]) = 0 for any M in PGen(P ). Indeed, if
f : P (I) −→ M is a pure epimorphism, then so is f [1] and, therefore, HomT (P, f [1]) is surjective (since
P is pure-projective). This proves the claim. Finally, consider a triangle

X
r // Y

s // Z
t // X[1]

with X and Z in PGen(P ). Given a pure epimorphism q : P (J) −→ Z, since t◦q = 0, there is a morphism
q̃ : P (J) −→ Y such that t ◦ q̃ = q. Finally, given also a pure epimorphism p : P (I) −→ X, it follows that
the morphism (r ◦ p,−q̃) : P (I)⊕P (J) −→ Y is a pure epimorphism, proving that Y lies in PGen(P ). �

Remark 5.5. We observe that the torsion classes considered above relate to the following three examples.
(1) It is shown in [1] that, in a compactly generated triangulated category T , the orthogonal S⊥

to a set S of compact objects (or, equivalently, the orthogonal S⊥ to the pure-projective object
S obtained as the coproduct of all objects in S) is a torsionfree class. In [53] it is then shown
that the subcategory S⊥ is also a torsion class if the category T is furthermore assumed to be
algebraic. The statement (1) of the Corollary above is a slight generalisation of this second fact.

(2) Statement (2) of the above Corollary is, to some extent, dual to that of [1], where it is shown
that compact objects generate torsion pairs. Here we show that pure-injective objects cogen-
erate torsion pairs in triangulated categories, just as they cogenerate cotorsion pairs in module
categories (see, for example, [19]). Certain objects cogenerating torsion pairs were studied in [45]
- these are called 0-cocompact. All known examples of 0-cocompact objects are pure-injective.
On the other hand, it follows from the definition that a 0-cocompact object X has the property
that ⊥X is closed under countable products. There are examples of pure-injective objects that
do not satisfy this property (see [3, Example 4.10]) and that, therefore, are not 0-cocompact.
In general, however, the relation between the notions of pure-injectivity and 0-cocompactness
remains rather mysterious.

(3) Statement (3) of the above Corollary is analogous to a statement well-known for module cat-
egories, namely that given a module M over a ring R such that Ext1R(M,Gen(M)) = 0, then
Gen(M) is a torsion class - see for example [4, Lemma 2.3].

Theorem 5.2 allows us to give a criterion for a torsionfree class to be also a torsion class.

Definition 5.6. If a subcategory Z of T is simultaneously a torsion and a torsionfree class, then we call
Z a TTF class and (⊥Z,Z,Z⊥) a TTF triple. Moreover, we say that the torsion pairs (⊥Z,Z) and
(Z,Z⊥) are adjacent.

Proposition 5.7. Let T be a compactly generated algebraic triangulated category. Every torsionfree
class closed under coproducts and pure quotients is a TTF class. In particular, every definable torsion
free class is a TTF class.

Proof. This follows from Theorem 5.2 using the fact that torsionfree classes are extension-closed. �

The question of when torsion pairs admit adjacent torsion pairs is extensively approached in [11,
Section 3]. TTF classes are interesting from many different points of view. Examples of suspended or
cosuspended TTF classes arise naturally in silting theory (see, for example, [39]). In this case, the torsion
pairs involved are t-structures or co-t-structures.

Definition 5.8. If (U ,V) is a torsion pair, then we say that it is
• a t-structure if U is suspended (or, equivalently, if V is cosuspended);
• a co-t-structure if U is cosuspended (or, equivalently, if V is suspended);
• left nondegenerate if

⋂
i∈Z U [i] = 0;

• right nondegenerate if
⋂

i∈Z V[i] = 0.
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If (U ,V) is a t-structure, we say that U is an aisle, V is a coaisle and U [−1] ∩ V is the heart of (U ,V).

It is well-known (see [8]) that the heart H of a t-structure in a triangulated category T is an abelian
category and that there is a naturally defined cohomological functor H0 : T −→ H. Moreover, in this
case, torsion precovers and torsionfree preenvelopes can be chosen functorially (and we will denote the
approximation triangle for an object X in T by UX → X → VX → UX [1]). Although this statement
goes back to the definition of t-structure in [8], it can also be obtained as a consequence of Theorem 2.9.
In fact, the following is a well-known result due to Keller and Vossieck.

Theorem 5.9 ([30, Proposition 1.1]). Let T be a triangulated category and U a suspended subcategory
of T . The following statements are equivalent.

(1) There is a t-structure (U ,U⊥) is T ;
(2) The inclusion of U in T admits a right adjoint;
(3) The inclusion of U⊥ in T admits a left adjoint.

Theorem 5.9 together with Theorem 2.9 allows us to restate Corollary 4.10 in the following way.

Proposition 5.10. Let X be a subcategory of a compactly generated algebraic triangulated category.
(1) If X is suspended and closed under coproducts and pure quotients, then (X ,X⊥) is a t-structure.
(2) If X is cosuspended and closed under products and pure subobjects, then (⊥X ,X ) is a t-structure.

In particular, if X is triangulated and definable, then both (⊥X ,X ) and (X ,X⊥) are t-structures i.e. X
is a triangulated TTF class.

For a subcategory X of a triangulated category T and I a subset of Z, we write:

X⊥I :=
⋂
i∈I

(X [−i])⊥ ⊥IX :=
⋂
i∈I

⊥(X [i]).

For each i in Z, we will denote the set {j ∈ Z | j > i} by > i; similarly for < i, ≤ i, ≥ i, i. The following
corollary uses the proposition above to build t-structures out of pure-injective objects in a minimal way.

Corollary 5.11. Let T be a compactly generated algebraic triangulated category and E a pure-injective
object in T . Then there is a t-structure (⊥≤0E,VE) and VE is the smallest coaisle containing E.

Proof. By Proposition 5.10(1), there is a t-structure of the form (⊥≤0E,VE) and, clearly, E lies in VE .
Suppose now that V is a coaisle containing E. Then E[k] lies in V for all k ≤ 0 and, therefore, ⊥V is
contained in ⊥≤0E. Hence, we have VE ⊆ V. �

6. Definability and recollements

In this section we consider the case of triangulated TTF classes, i.e. triangulated subcategories which
are both torsion and torsionfree classes. We know from Proposition 5.10 that triangulated TTF classes are
bireflective subcategories. These turn out to be related to certain diagrams of functors called recollements.
Let us recall and relate all these concepts.

Definition 6.1. A diagram of triangulated categories and triangle functors of the form

B i∗ // T
j∗ //

i∗

}}

i!
aa Y

j!

||

j∗

aa (6.1)

is said to be a recollement of T if
(1) (i∗, i∗, i

!) and (j!, j
∗, j∗) are adjoint triples;

(2) i∗, j! and j∗ are fully faithful; and
(3) Im i∗ = Ker j∗.

Two recollements given by triples (i∗, i∗, i
!), (j!, j

∗, j∗) and (i′∗, i′∗, i
′!), (j′! , j

′∗, j′∗) respectively are equiv-
alent if Im i∗ = Im i′∗, Im j! = Im j′! and Im j∗ = Im j′∗.

Recall that given a recollement as above, for each object X in the triangulated T , the units and
counits of the adjunctions yield triangles as follows

j!j
∗X −→ X −→ i∗i

∗X −→ j!j
∗X[1] i∗i

!X −→ X −→ j∗j
∗X −→ i∗i

!X[1].

Triangulated TTF triples also turn out to be related to the notion of (co)smashing subcategory.
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Definition 6.2. A triangulated subcategory S of a triangulated category T with products and coprod-
ucts is said to be smashing if S is coreflective and S⊥ is closed under coproducts. Dually, we say that
a triangulated subcategory C is cosmashing if it is reflective and ⊥C is closed under products.

We now state the following equivalent descriptions of triangulated TTF classes. Most of the conditions
are well-known, however we provide an argument for the sake of completion.

Proposition 6.3. Let T be a compactly generated algebraic triangulated category. The following are
equivalent for a triangulated subcategory B of T .

(1) B is a TTF class in T ;
(2) B = S⊥ for a smashing subcategory S;
(3) B = ⊥C for a cosmashing subcategory C;
(4) B is bireflective;
(5) There is a recollement of T of the form (6.1);
(6) B is definable;
(7) B is closed under products and pure subobjects.

Proof. (1) ⇔ (2) ⇔ (3): We refer to [43, Corollary 3.15] and references therein.
(1) ⇔ (4): This follows, for example, from Theorem 5.9.
(4) ⇒ (5): Define i∗ : B −→ T to be the inclusion functor, Y := T /B to be the Verdier quotient and

let j∗ : T −→ Y be the corresponding Verdier quotient functor. Since B is bireflective, it then follows
from [13, Theorem 2.1] that j∗ has both left and right adjoints and that these are fully faithful.

(5) ⇒ (4): This is clear by definition of bireflective subcategory.
(1) ⇒ (6): Let (S,B, C) be a triangulated TTF triple. Consider the ideal I of morphisms in T c

consisting of morphisms factoring through the smashing subcategory S. By [34, Theorem 12.1], the class
I⊥ := {B ∈ T | HomT (g,B) = 0 for all g ∈ I} coincides with the class B. For each g in I, we may
complete to a triangle

L
g−→M

f−→ N −→ L[1]

and note that HomT (g,B) = 0 if and only if HomT (f,B) is surjective. That is, if and only if the coherent
functor Ff := Coker (HomT (f,−)) vanishes on B. Thus, the class B is definable.

(6) ⇒ (1): This follows from Proposition 5.10.
(6) ⇒ (7): This follows from Theorem 4.7.
(7)⇒ (6): Since B closed under pure subojects and products, it is also closed under coproducts. Since

it is furthermore triangulated, it is then closed under directed homotopy colimits (see Remark 4.11), and
the result then follows from Theorem 4.7. �

Remark 6.4. The bijective correspondence between triangulated TTF classes, smashing subcategories
and equivalence classes of recollements is well-understood for a large class of triangulated categories (see,
for example, [41]). Moreover, in a compactly generated triangulated category, the equivalence between (2)
and (6) can be found in [34]. It boils down to the fact that smashing subcategories of compactly generated
triangulated categories are determined by certain ideals of morphisms between compact objects. We use
those arguments to prove (1) ⇒ (6), and provide new arguments for the converse implication.

Remark 6.5. The Telescope Conjecture for compactly generated triangulated categories asserts that every
smashing subcategory is compactly generated, i.e. that given a smashing subcategory S of a compactly
generated triangulated category T , there is a set of compact objects K such that S⊥ = K⊥. If T is
furthermore algebraic, Proposition 6.3 allows us to restate the Telescope Conjecture in an equivalent
way: for every triangulated subcategory B closed under products and pure subobjects, there is a set
of compact objects K such that B = K⊥. The Telescope Conjecture is, however, known to be false for
general compactly generated algebraic triangulated categories (see [28] and [6] for counterexamples). Still,
it remains a difficult problem to identify which triangulated categories satisfy the Telescope Conjecture.

Next we observe that given an extension-closed definable subcategory of a compactly generated al-
gebraic triangulated category (which by Theorem 5.2 is a torsion class), we can build a subcategory
satisfying the equivalent conditions of the proposition above.

Corollary 6.6. Let X be a subcategory of a compactly generated algebraic triangulated category T . If
X is closed under extensions, products and pure subobjects, then ∩i∈ZX [i] is a triangulated TTF class.

Proof. It is clear that the intersection is closed under extensions, products and pure subobjects. Now
observe that if X lies in X [i] for all i in Z, then X[k] lies in X [k + i] for all i in Z, thus showing that
∩i∈ZX [i] is triangulated. The assertion then follows directly from Proposition 6.3. �
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Recollements of triangulated categories are used to glue torsion pairs. We recall the following well-
known theorem (whose proof is the same as the original statement made for t-structures in [8]). Given
two subcategories W and Z of T , we denote by W ∗Z the subcategory of T whose objects are those X
in T for which there are objects W in W, Z in Z and a triangle

W −→ X −→ Z −→W [1].

Theorem 6.7 ([8, Théorème 1.4.10, Proposition 1.4.12]). Let T be a triangulated category and consider
a recollement of T of the form (6.1), and denote by (S,B, C) its associated triangulated TTF triple.

(1) If (W,Z) and (U ,V) are torsion pairs in B and Y respectively, then there is a torsion pair in T
of the form (j!U ∗ i∗W, i∗Z ∗ j∗V).

(2) A torsion pair (M,N ) in T is obtained by the construction in (1) if and only if j!j∗M⊆M and
if and only if j∗j∗N ⊆ N , in which case the torsion pairs that give rise to it are (j∗M, j∗N ) in Y
and (i∗M, i!N ) in B. Moreover, in this case, we have that j!j∗M =M∩S and j∗j∗N = N ∩C.

The torsion pair in T obtained in the theorem above is said to be glued from the torsion pair (W,Z)
in B and the torsion pair (U ,V) in Y along the given recollement.

The following well-known lemma will be useful in what follows.

Lemma 6.8. Let C be a triangulated subcategory of a triangulated category T . Let (U ,V) be a torsion
pair in T and suppose U ⊆ C, then (U ,V ∩ C) is a torsion pair in C. Similarly, if V ⊆ C, then (U ∩ C,V)
is a torsion pair in C.

Proof. Clearly the first two conditions of Definition 3.12 will restrict to C. Moreover, if U is contained
in C then, for any X in C, the first two terms of the triangle given by Definition 3.12 are contained in
C. Since C is closed under extensions and shifts, it follows that the third term will be contained in V ∩ C
and so (U ,V ∩ C) is a torsion pair in C. A similar argument yields the second claim. �

We finish with a result that states that any torsion pair with a definable torsion or torsionfree class
can be obtained by glueing along a recollement of a trivial torsion pair with a torsion pair with certain
nondegeneracy conditions. Moreover, we show that there is a natural operation generating a new torsion
pair from an old one (see also [47, Section 10] for an analogous construction).

Proposition 6.9. Let T be a compactly generated algebraic triangulated category and let (U ,V) be a
torsion pair in T with U a definable subcategory. Consider the bireflective subcategory B =

⋂
i∈Z U [i] =

⊥ZV given by Corollary 6.6 and the associated recollement

B i∗ // T
j∗ //

i∗

}}

i!
aa Y

j!

||

j∗

aa

where i∗ is the corresponding inclusion functor into T . Denote by S and C the associated smashing and
cosmashing subcategories, respectively. Then the following statements hold.

(1) The torsion pair (U ,V) in T is obtained by glueing:
• the left nondegenerate torsion pair (j∗U , j∗V) which, under the equivalence between Y and
C induced by j∗, corresponds to the torsion pair (U ∩ C,V) in C;

• the trivial torsion pair (B, 0) in B.
(2) The pair (U ∩ S,B ∗ V) is a left nondegenerate torsion pair in T obtained by glueing:

• the left nondegenerate torsion pair (j∗U , j∗V);
• the trivial torsion pair (0,B) in B.

Proof. Firstly, note that indeed the equality
⋂

i∈Z U [i] = ⊥ZV follows immediately from the fact that, for
each i in Z, we have U [i] = ⊥V[i].

(1) First observe that, since V is contained in C, we have that j∗j∗V = V. Therefore, by Theorem
6.7, the torsion pair (U ,V) is obtained by glueing (j∗U , j∗V) and (i∗U , i!V). Moreover, by Lemma
6.8, (U ∩ C,V) is a torsion pair in C with torsionfree class j∗j∗V = V. Therefore, it must be the one
corresponding under the equivalence j∗ between Y and C to the torsion pair (j∗U , j∗V) (i.e. we get
that j∗j∗U = U ∩ C). Note also that ∩i∈Z(U ∩ C)[i] = B ∩ C = 0 and, thus, (j∗U , j∗V) is indeed left
nondegenerate. Finally, observe that i!V = 0 since Ker (i!) = C and V is contained in C. Therefore we
also have i∗U = B, completing the proof.

(2) We glue the torsion pairs (j∗U , j∗V) in Y and (0,B) in B. By Theorem 6.7(1), the resulting
torsion pair is (j!j

∗U ∗ 0,B ∗ j∗j∗V). Since, as seen in Theorem 6.7(2), we have j!j∗U = U ∩ S and
14



j∗j
∗V = V ∩ C = V, we get the desired torsion pair. Finally, observe that, as in (1), it is easy to see that

the resulting torsion pair is left nondegenerate. �

Next we will consider the dual case of a definable torsionfree class. It follows from Proposition 5.7
that such a class is in fact a TTF class and, therefore, we obtain the following stronger result.

Proposition 6.10. Let T be a compactly generated algebraic triangulated category and let (U ,V) be a
torsion pair in T with V a definable subcategory. Consider the bireflective subcategory B =

⋂
i∈Z V[i] =

U⊥Z given by Corollary 6.6 and the associated recollement

B i∗ // T
j∗ //

i∗

}}

i!
aa Y

j!

||

j∗

aa (6.2)

where i∗ is the corresponding inclusion functor into T . Denote by S and C the associated smashing and
cosmashing subcategories, respectively. Then the following statements hold.

(1) The torsion pair (U ,V) in T is obtained by glueing:
• the right nondegenerate torsion pair (j∗U , j∗V) which, under the equivalence between Y and
S induced by j!, corresponds to the torsion pair (U ,V ∩ S) in S;

• the trivial torsion pair (0,B) in B.
(2) The pair (U ∗ B,V ∩ C) is a right nondegenerate torsion pair in T obtained by glueing

• the right nondegenerate torsion pair (j∗U , j∗V);
• the trivial torsion pair (B, 0) in B.

(3) The class V can be expressed as B ∗ (V ∩ C) and also as (V ∩ S) ∗ B.

Proof. Statements (1) and (2) are dual to Proposition 6.9. For statement (3) we use the fact that, by
Proposition 5.7, we have a torsion pair (V,V⊥). Indeed, this allows us to conclude, by Proposition 6.9(1),
that j∗j∗V = V ∩ C. Using item (1) above, we then obtain that V = B ∗ (V ∩ C) by Theorem 6.7. On
the other hand, by applying Proposition 6.9(1) to the torsion pair (V,V⊥) we have that it is obtained
by glueing (j∗V, j∗(V⊥)) and (B, 0). By item (1) above, we have that j!j∗V = V ∩ S and so we conclude
that V = (V ∩ S) ∗ B by Theorem 6.7. �

We end this paper by considering a special case of the above proposition where V is cosuspended.
This allows us to provide a structural description of t-structures with a definable coaisle.

Proposition 6.11. Let T be a compactly generated algebraic triangulated category and let (U ,V) be
a t-structure in T with V a definable subcategory. Consider the bireflective subcategory B =

⋂
i∈Z V[i]

given by Corollary 6.6 and denote by S = ⊥B and C = B⊥ the associated smashing and cosmashing
subcategories, respectively. Then there is a pure-injective object C such that

(1) The smallest coaisle containing C is VC = V ∩ C.
(2) The definable coaisle V can be expressed as B ∗ VC .
(3) The heart H of (U ,V) is equivalent to the heart of the t-structure (⊥≤0C,VC).

Proof. Since V is definable we have that, by [51, Theorem C] and [37, Theorem 3.11], the heart H =
U [−1] ∩ V of (U ,V) is a Grothendieck abelian category. In particular, H has an injective cogenerator
E. Since V is closed under coproducts, it follow that the cohomological functor H0 : T −→ H commutes
with coproducts ([5, Lemma 3.3]). Using Brown representability as in [44], we then conclude that there
is an object C representing the functor HomH(H0(−), E) i.e.,

HomT (−, C) ∼= HomH(H0(−), E).

Moreover, by the proof of [5, Theorem 3.6], we have that C is pure-injective.
(1) By Proposition 6.10(2), we have a t-structure (U ∗B,V∩C) in T . We will show that this t-structure

coincides with the t-structure (⊥≤0C,VC) given by Corollary 5.11. To show that VC is contained in V∩C,
it suffices to show that C lies in V ∩ C. By construction of the functor H0 (see, for example, [8]), it
follows that H0(U) = 0 and H0(V[k]) = 0 for all k < 0. In particular, we have that H0(B) = 0 and,
since H0 is a cohomological functor, it follows that H0(U ∗B) = 0. This implies that, by construction of
C, we have that C lies in (U ∗ B)⊥ = V ∩ C.

For the reverse inclusion, let Z be an object in ⊥≤0C, and consider the triangle arising from the
recollement (6.2)

j!j
∗Z −→ Z −→ i∗i

!Z −→ j!j
∗Z[1].
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Applying the cohomological functor H0 to the triangle, we conclude that H0(j!j
∗Z[k]) ∼= H0(Z[k]) for

all k in Z because H0(B) = 0. Moreover, we have that H0(Z[k]) = 0 for all k ≥ 0 by definition of C and
choice of Z. Finally, note that by Proposition 6.10(1), the functor j! identifies the right nondegenerate
t-structure (j∗U , j∗V) with (U ,V ∩ S) in S. Since j!j∗Z lies in S, the nondegeneracy guarantees that
j!j
∗Z lies in U if and only if H0(j!j

∗[k]) = 0 for all k ≥ 0 (see, for example, [8]). Thus we have that,
indeed, j!j∗Z lies in U and Z lies in U ∗ B. This proves that ⊥≤0C ⊆ U ∗ B and, hence, VC ⊇ V ∩ C.

(2) This follows by using (1) together with Proposition 6.10(3).
(3) Recall that, by Proposition 6.10(2), the t-structure (U ,V) can be obtained by glueing the t-

structures (0,B) and (j∗U , j∗V). It then follows from [8] (see also [47, Section 4] for details) that the
functor j∗|H : H −→ j∗H is a Serre quotient functor inducing a recollement of abelian categories and
that, moreover, Ker (j∗|H) is the heart of the t-structure (0,B) (which is zero). Therefore, j∗|H is indeed
an equivalence of categories and since (j∗U , j∗V) identifies with (U ∗ B,V ∩ C) via the functor j∗ (see
Proposition 6.10(3)), the result follows by (1) above. �

Remark 6.12. Note that, in [44], the pure-injective object C obtained in the above proposition is known
as a partial cosilting object.
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