We prove a Gamma-convergence result for a class of Ginzburg-Landau type functionals with N-well potentials, where N (is a closed and (k - 2)-connected submanifold of R-m, in arbitrary dimension. This class includes, for instance, the Landau-de Gennes free energy for nematic liquid crystals. The energy density of minimisers, subject to Dirichlet boundary conditions, converges to a generalised surface (more precisely, a flat chain with coefficients in pi(k-1) (N)) which solves the Plateau problem in codimension k. The analysis relies crucially on the set of topological singularities, that is, the operator S we introduced in the companion paper [17].

Topological Singular Set of Vector-Valued Maps, II: Gamma-convergence for Ginzburg-Landau type functionals

Giacomo Canevari
;
Giandomenico Orlandi
2021-01-01

Abstract

We prove a Gamma-convergence result for a class of Ginzburg-Landau type functionals with N-well potentials, where N (is a closed and (k - 2)-connected submanifold of R-m, in arbitrary dimension. This class includes, for instance, the Landau-de Gennes free energy for nematic liquid crystals. The energy density of minimisers, subject to Dirichlet boundary conditions, converges to a generalised surface (more precisely, a flat chain with coefficients in pi(k-1) (N)) which solves the Plateau problem in codimension k. The analysis relies crucially on the set of topological singularities, that is, the operator S we introduced in the companion paper [17].
2021
Ginzburg-Landau
Gamma-convergence
Topological singularities
Flat chains
File in questo prodotto:
File Dimensione Formato  
Canevari,Orlandi-ARMA.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1054788
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact