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Abstract

Weprove aΓ -convergence result for a class ofGinzburg–Landau type function-
als withN -well potentials, whereN is a closed and (k − 2)-connected submani-
fold ofRm , in arbitrary dimension. This class includes, for instance, the Landau-de
Gennes free energy for nematic liquid crystals. The energy density of minimis-
ers, subject to Dirichlet boundary conditions, converges to a generalised surface
(more precisely, a flat chainwith coefficients inπk−1(N )) which solves the Plateau
problem in codimension k. The analysis relies crucially on the set of topological
singularities, that is, the operator S we introduced in the companion paper [17].

1. Introduction

Let n � 0, k � 2, m � 2 be integers, and let Ω ⊆ R
n+k be a bounded, smooth

domain. Let ε > 0 be a small parameter. For u ∈ W 1,k(Ω, Rm), we define the
functional

Eε(u) :=
ˆ

Ω

(
1

k
|∇u|k + 1

εk
f (u)

)
. (1.1)

Here, f : Rm → R is a non-negative, continuous potential, whose zero-set N :=
f −1(0) is assumed to be a smooth, compact, (k − 2)-connected manifold without
boundary. The aim of this paper is to understand the asymptotic behaviour of the
functionals Eε in the limit as ε → 0, by a Γ -convergence approach. Our analysis
builds upon the results obtained in a companion paper, [17].

Functionals of the form (1.1), which describe a kind of penalised k-harmonic
map problem (see e.g. [19,40]), arise naturally in different contexts. A well-known
example is the Ginzburg–Landau functional, which corresponds to the case k =
m = 2 and f (u) := (|u|2 − 1)2, so that the zero-set of f is the unit circle,
N = S

1 ⊆ R
2. The Ginzburg–Landau functional was originally introduced as a

(simplified) model for superconductivity, but has attracted considerable attention in
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the mathematical community since the pioneering work by Bethuel, Brézis and
Hélein [8]. Another example, arising from materials science, is the Landau-de
Gennes model for nematic liquid crystals (in the so-called one-constant approxi-
mation, see e.g. [23]). In this case, k = 2 and the zero-set of f is a real projective
plane N = RP2, whose elements can be interpreted as the preferred configu-
rations for the material. Functionals of the form (1.1) have also applications to
mesh generation in numerical analysis, via the so-called cross-field algorithms (see
e.g. [18]).

Minimisers of (1.1) subject to a boundary condition

u|∂Ω = v ∈ W 1−1/k,k(∂Ω, N )

may not satisfy uniform energy bounds, due to topological obstructions carried by
the boundary datum v. When this phenomenon occurs, the energy of minimisers is
of order |log ε| (see e.g. [8,11,49] in case k = 2,N = S

1). A similar phenomenon
arises for tangent vector fields on a closed manifold, due to the Poincaré-Hopf
theorem (see e.g. [34]). The analysis of the Ginzburg–Landau case shows that
the energy of minimisers (and other critical points) concentrates, to leading order,
on a n-dimensional surface; see e.g. [8,9,41,51]. From a variational viewpoint,
the Ginzburg–Landau functional itself can be considered an approximation of an
n-dimensional “weighted area” functional, in a sense that can be made precise
by Γ -convergence [2,3,39,51]. Therefore, the Ginzburg–Landau functional and
its variants have been proposed as tools to construct “weak minimal surfaces” or,
moreprecisely, stationaryvarifolds of codimensiongreater thanone [4,9,42,48,52].
Energy concentration results have also been established for Landau-de Gennes
minimisers [5,15,16,22,28,35,36,43,46]. To our best knowledge, minimisers of
functionals associated with more general manifolds N , in the logarithmic energy
regime, have been studied only in case n = 0, k = 2 so far [15,44,45].

In this paper, we show that the re-scaled functionals |log ε|−1 Eε do converge
to an n-dimensional weighted area functional, thus extending the results in [2,39]
to more general potentials f . The key tool is the topological singular set of vector-
valued maps, that is, the operator S we introduced in [17], which identifies the
appropriate topology of the Γ -convergence. The operator S effectively serves as
a replacement, or rather a generalisation, of the distributional Jacobian, which is
commonly used when the distinguished manifold is a sphere,N = S

k−1. In order
to overcome the algebraic issues that make the distributional Jacobian incompatible
with the topology of other manifoldsN , we work in the setting of flat chains with
coefficients in πk−1(N ) [26]. In the context of manifold-constrained problems, the
use of flat chains with coefficients in an Abelian group was proposed by Pakzad
and Rivière [47] and traces its roots back in the earlier literature on the subject:
the very notion of “minimal connection”, introduced by Brezis et al. [13], can
be interpreted as the flat norm of the distributional Jacobian.

We state our main Γ -convergence result, Theorem C, in Section 2, after intro-
ducing some background and notation. Here, we present an application (TheoremA
below) to the asymptotic analysis of minimisers of (1.1) in the limit as ε → 0. We
make the following assumptions on the potential f :

(H1) f ∈ C1(Rm) and f � 0.
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(H2) The set N := f −1(0) �= ∅ is a smooth, compact manifold without
boundary. Moreover, N is (k − 2)-connected, that is π0(N ) = π1(N ) =
. . . = πk−2(N ) = 0, and πk−1(N ) �= 0. In case k = 2, we also assume
that π1(N ) is Abelian.
(H3) There exists a positive constant λ0 such that f (y) � λ0 dist2(y, N ) for
any y ∈ R

m .

The assumption (H2) is consistent with the setting of [17] and is satisfied, for
instance, when k = 2 andN = S

1 (theGinzburg–Landau case) or k = 2 andN =
RP2 (the Landau-de Gennes case). The assumption (H3) is both a non-degeneracy
condition around the minimising set N and a growth condition.

Remark 1. We do not expect the assumption (H3) to be sharp. In fact, (H3) may
probably be relaxed so as to include potentials that behave as dists(·, N ), for
some s > 2, in a neighbourhood of N .

We considerminimisers uε,min of (1.1), subject to the boundary condition u = v

on ∂Ω . On the boundary datum v, we assume

(H4) v ∈ W 1−1/k,k(∂Ω, N ) — that is, v ∈ W 1−1/k,k(∂Ω, Rm) and v(x) ∈
N forH n+k−1-a.e. x ∈ ∂Ω .

Under the assumptions (H1)–(H4), the rescaled energy densities

με,min :=
(
1

k
|∇uε,min|k + 1

εk
f
(
uε,min

)) dx Ω

|log ε|
have uniformly bounded mass (see e.g. Remark 9 below; here, dx Ω denotes the
Lebesgue measure restricted to Ω). Up to extraction of a subsequence, we may
assume that με,min converges weakly∗ (as measures in R

n+k) to a non-negative
measure μmin, as ε → 0. We provide a variational characterisation of μmin in
terms of flat chains with coefficients in (πk−1(N ), | · |∗), where | · |∗ is a suitable
norm, defined in Section 2 below. (For instance, in case k = 2 and N = S

1,
|d|∗ = π |d| for any d ∈ π1(S

1) 	 Z.) We denote the mass of such a flat chain S
by M(S), and the restriction of S to a set E by S E . We have

Theorem A. Under the assumptions (H1)–(H4), there exists a finite-mass n-chain
Smin, with coefficients in (πk−1(N ), | · |∗) and support in Ω , such that μmin(E) =
M(Smin E) for any Borel set E ⊆ R

n+k . Moreover, Smin minimises the mass in its
homology class—that is, for any (n +1)-chain R with coefficients in (πk−1(N ), | ·
|∗) and support in Ω , we have

M(Smin) � M(Smin + ∂ R).

In other words, in the limit as ε → 0 the energy of minimisers concentrates, to
leading order, on the support of a flat chain Smin that solves a homological Plateau
problem. The homology class of Smin is uniquely determined by the domain Ω and
the boundary datum v (that is, Smin belongs to the class C (Ω, v) defined by (2.6)
below).We stress that TheoremAdoes not require any topological assumption, such
as simply connectedness, on the domain Ω . However, the homology class of Smin
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does depend on the topology of the domain and it can be described more easily ifΩ
has a simple topology (see the examples in Section 2 below). On the other hand,
the topological assumption (H2) on the manifold N is essential. An analogue of
Theorem A in case k = 2 and the fundamental group of N is non-Abelian would
already be of interest in terms of the applications; manifolds with non-Abelian
fundamental group arise quite naturally, for instance, in materials science (e.g., as a
model for biaxial liquid crystals). Unfortunately, the very statement of Theorem A
does not make sense in the non-Abelian setting, because homology requires the
coefficient group to be Abelian. Convergence results in case n = 0, k = 2 (see
e.g. [15,44]) suggest that the energy concentration set may inherit someminimality
properties, even if π1(N ) is non-Abelian. However, a general convergence result
in the non-Abelian setting, along the lines of TheoremA,would presumably require
some ‘ad-hoc’ tools from Geometric Measure Theory.

Remark 2. Theorem A characterises the asymptotic behaviour of the energy of
minimisers, to leading order:

Eε

(
uε,min

) = M(Smin) |log ε| + o (|log ε|) as ε → 0.

In some cases, the next-to-leading order term can be characterised, too. For instance,
when n = 0, k = 2, the energy concentrates on a finite number of points and the
next-to-leading order term in the energy expansion is a ‘renormalised energy’which
describes the interaction among the singular points. The renormalised energy was
introduced, in the Ginzburg–Landau setting, by Bethuel et al. [8] and it was
extended very recently by Monteil et al. [44,45] to more general functionals.
This raises the question as to whether a renormalised energy may be derived in
case n = 0, k > 2. A higher-order energy expansion for the three-dimensional
Ginzburg–Landau functional (n = 1, k = 2,N = S

1)was obtained byContreras
and Jerrard [21], in a setting where the energy concentrates on a cluster of ‘nearly
parallel’ vortex filaments.

We deduce TheoremA from ourΓ -convergence result, TheoremC in Section 2.
The proof of the Γ -lower bound is based on the same strategy as in [2]. However,
the construction of a recovery sequence is rather different from [2]. The main
building block, Proposition 4 in Section 3.2, is inspired by the “dipole construction”
[6,7,13]. Here, dipoles are suitably inserted into a non-constant and, in fact, singular
background.

As an auxiliary result, we prove the following lower energy bound, which may
be of independent interest.

Proposition B. Suppose that (H1)–(H4) hold. Let Ω ⊆ R
k be a bounded, Lipschitz

domain that is homeomorphic to a ball. Then, for any u ∈ W 1,k(Ω, Rm) such that
u = v on ∂Ω , it holds that

Eε(u) � |σ |∗ |log ε| − C,

where σ ∈ πk−1(N ) is the homotopy class of v and C is a positive constant that
depends only on Ω , v.
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If Ω ⊆ R
k is homeomorphic to a ball and v ∈ W 1−1/k,k(∂Ω, N ), the ho-

motopy class of v can be defined as in [14]. In the Ginzburg–Landau case, this
inequality was proved by Sandier [50] (with k = 2) and Jerrard [38]; for the
Landau-de Gennes functional, see e.g. [5,16]. The proof of Proposition B in con-
tained in Appendix C (in fact, a slightly stronger statement is given there).

Remark 3. In case σ = 0, Proposition B does not provide any information. How-
ever, there could be critical points of the functional Eε whose energy diverges
logaritmically even if the boundary datum is homotopically trivial. In other words,
energy concentrationmay happen not only because of global topological contraints,
but also for other reasons, such as symmetry. See, for instance, Ignat et al. [37]
for an analysis of two-dimensional Landau-de Gennes solutions (n = 0, k = 2,
N = RP2).

The paper is organised as follows: in Section 2we recall somenotation from [17]
and we state the main Γ -convergence result, Theorem C. We prove the Γ -upper
bound first, in Section 3, and give the proof of the Γ -lower bound in Section 4.
Theorem A is deduced from Theorem C in Section 5. A series of appendices, with
proofs of technical results, completes the paper.

2. Setting of the Problem and Statement of the Γ -convergence Result

Throughout the paper, we will write A � B as a shorthand for A � C B, where
C is a positive constant that only depends on n, k, f ,N , and Ω . If F ⊆ R

n+k is a
rectifiable set of dimension d and u ∈ W 1,k

loc (Rn+k, Rm) we will write

Eε(u, F) :=
ˆ

F

(
1

k
|∇u|k + 1

εk
f (u)

)
dH d.

Additional notationwill be set later on. Throughout the paper, we assume that (H1)–
(H4) are satisfied.

2.1. Choice of the Norm on πk−1(N )

Under the assumption (H2), the groupπk−1(N ) is Abelian (andwe use additive
notation for the group operation). We recall that a function | · | : πk−1(N ) →
[0, +∞) is called a norm if it satisfies the following properties:

(i) |σ | = 0 if and only if σ = 0
(ii) | − σ | = |σ | for any σ ∈ πk−1(N )

(iii) |σ1 + σ2| � |σ1| + |σ2| for any σ1, σ2 ∈ πk−1(N ).

As in [17], we assume that the norm satisfies

inf
σ∈πk−1(N )\{0}

|σ | > 0, (2.1)

that is, | · | induces the discrete topology on πk−1(N ).
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Remark 4. We do not require that |nσ | = n|σ | for any n ∈ N, σ ∈ πk−1(N ); this
is consistent with the theory of flat chains as developed in [26,55].

While the results of [17] hold for any norm on πk−1(N ) that satifies (2.1),
Theorem A only holds for a specific choice of the norm. Let us define such a norm,
following the approach in [20, Chapter 6]. A natural attempt, motivated by the
analogy with the functional (1.1), is to define

Emin(σ ) := inf

{
1

k

ˆ
Sk−1

|∇�v|k : v ∈ W 1,k
(
S

k−1, N
)

∩ σ

}
(2.2)

for any σ ∈ πk−1(N ). Here∇� denotes the tangential gradient on Sk−1, that is, the
restriction of the Euclidean gradient∇ to the tangent plane to the sphere. Due to the
compact embedding W 1,k(Sk−1,N ) ↪→ C(Sk−1, N ), the set W 1,k(Sk−1, N )∩
σ is sequentially W 1,k-weakly closed and hence, the infimum in (2.2) is achieved.
However, the function Emin fails to be a norm, in general, because it may not satisfy
the triangle inequality (iii). To overcome this issue, for any σ ∈ πk−1(N )we define

|σ |∗ := inf

{ q∑
i=1

Emin (σi ) : q ∈ N, (σi )
q
i=1 ∈ πk−1(N )q ,

q∑
i=1

σi = σ

}
. (2.3)

Proposition 1. The function |·|∗ is a norm onπk−1(N ) that satisfies (2.1) and |σ |∗ �
Emin(σ ) for any σ ∈ πk−1(N ). The infimum in (2.3) is achieved, for any σ ∈
πk−1(N ). Moreover, the set

S := {σ ∈ πk−1(N ) : |σ |∗ = Emin(σ )} (2.4)

is finite, and for any σ ∈ πk−1(N ) there exists a decomposition σ = ∑q
i=1 σi

such that |σ |∗ =∑q
i=1 |σi |∗ and σi ∈ S for any i .

The proof of this result will be given in Appendix A. In case N = S
k−1, the

group πk−1(S
k−1) is isomorphic toZ,S = {−1, 0, 1}, and for any d ∈ Zwe have

|d|∗ = (k − 1)k/2L k
(

Bk
1

)
|d| ,

whereL k(Bk
1 ) is the Lebesguemeasure of the unit ball inRk and |d| is the standard

absolute value of d (see Example A.1).

Remark 5. When k = 2, the infimum in (2.2) is achieved by aminimising geodesic
in the homotopy classσ , parametrised bymultiples of arc-length.As a consequence,
Emin(σ ) is — up to a multiplicative constant — the length squared of a minimising
geodesic in the class σ , and E1/2

min is a norm on π1(N ). However, E1/2
min may not

coincide with | · |∗, not even up to a multiplicative constant. For instance, whenN
is the flat torus,N = R

2/(2πZ)2 = S
1 × S

1, we have π1(N ) 	 Z × Z,

E1/2
min(d1, d2) = π1/2

(
d2
1 + d2

2

)1/2
and |(d1, d2)|∗ = π (|d1| + |d2|)

for any (d1, d2) ∈ Z × Z. We did not investigate whether, for arbitrary k > 2
and N , E1/k

min is a norm on πk−1(N ).
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2.2. Notation for Flat Chains

We follow the notation adopted in [17, Section 2]. In particular, we denote by
Fq(Rn+k; πk−1(N )) the space of flat q-dimensional chains in R

n+k with coeffi-
cients in the normed group (πk−1(N ), | · |∗). We denote the flat norm by F, and
the mass by M. The support of a flat chain S is denoted by spt S. The restriction
of S to a Borel set E ⊆ R

n+k is denoted S E . Given f ∈ C1(Rn+k, Rn+k),
we write f∗S for the push-forward of S through f . (The reader is referred e.g. to
[26,55] for the definitions of these objects.)

Given a domainΩ ⊆ R
n+k , we defineFq(Ω; πk−1(N )) as the set of flat chains

such that spt S ⊆ Ω . We also define Mq(Ω; πk−1(N )) as the set of flat chains
S ∈ Fq(Ω; πk−1(N )) such that M(S) < +∞. We will say that two chains S1,
S2 ∈ Mq(Ω; πk−1(N )) are cobordant in Ω if and only if there exists a finite-mass
chain R ∈ Mq+1(Ω; πk−1(N )) such that

S2 − S1 = ∂ R.

In this case, we write S1 ∼Ω S2. The cobordism in Ω defines an equivalence
relation on the space of finite-mass chains, Mq(Ω; πk−1(N )). Moreover, due to
the isoperimetric inequality (see e.g. [25, 7.6]), cobordism classes are closed with
respect to the F-norm.

The group of flat q-chains relative to a domain Ω ⊆ R
n+k is defined as the

quotient

Fq (Ω; πk−1(N )) := Fq
(
R

n+k; πk−1(N )
)

{S ∈ Fq
(
Rn+k; πk−1(N )

) : spt S ⊆ Rn+k\Ω}

To avoid notation, the equivalence class of a chain S ∈ Fq(Rn+k; πk−1(N )) will
still be denoted by S. The quotient norm may equivalently be rewritten as

FΩ(S) = inf
{
M(P Ω) + M(Q Ω) : P ∈ Fq+1

(
R

n+k; πk−1(N )
)

,

Q ∈ Fq

(
R

n+k; πk−1(N )
)

, spt(S − ∂ P − Q) ⊆ R
n+k\Ω} (2.5)

(see [17, Section 2.1]).
For any S ∈ Fn(Ω; πk−1(N )) and R ∈ Fk(R

n+k; Z) such that M(R) +
M(∂ R) < +∞, spt R ⊆ Ω , and spt(∂S) ∩ spt R = spt S ∩ spt(∂ R) = ∅,
we denote the intersection index of S and R (as defined in [17, Section 2.1])
by I(S, R) ∈ πk−1(N ). For instance, if S is carried by a n-polyhedron with
constant multiplicity σ ∈ πk−1(N ), R is carried by a k-polyhedron with unit
multiplicity and (the supports of) S, R intersect transversally, then I(S, R) = ±σ ,
where the sign depends on the relative orientation of S and R. The intersection
index I is a bilinear pairing and satisfies suitable continuity properties (see e.g. [17,
Lemma 8]).
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2.3. The Topological Singular Set

In [17], we constructed the topological singular set, Sy(u), for u ∈ (L∞ ∩
W 1,k−1)(Ω, Rm) and y ∈ R

m . Here, we introduce a variant of that construction and
define Sy(u) in case u ∈ W 1,k(Ω, Rm), without assuming that u ∈ L∞(Ω, Rm).
In both cases, the operator Sy(u) generalises the Jacobian determinant of u —
and indeed, the Jacobian of u : Rk → R

k is well-defined in a distributional sense
if u ∈ (L∞ ∩ W 1,k−1)(Rk, Rk), and in a pointwise sense if u ∈ W 1,k(Rk, Rk).
The starting point of the construction is the following topological property:

Proposition 2. ([30]). Under the assumption (H2), there exist a compact, polyhe-
dral complex X ⊆ R

m of dimension m − k and a smooth map 
 : Rm\X → N
such that 
(z) = z for any z ∈ N , and

|∇
(z)| � C

dist(z, X )

for any z ∈ R
m\X and some constant C = C(N , m, X ) > 0.

This result, or variants thereof,wasproved in [30,Lemma6.1], [12, Proposition2.1],
[33, Lemma 4.5]. While in our previous paper [17] we required X to be a smooth
complex, in this paper we require X to be polyhedral, because this will simplify
some technical points in the proofs.

Let us fix once and for all a polyhedral complex X and a map 
, as in Propo-
sition 2. Let δ∗ ∈ (0, dist(N , X )) be fixed, and let B∗ := Bm(0, δ∗) ⊆ R

m .
Let*

Y := L1 (B∗, Fn(Ω; πk−1(N ))
)
, Y := L1 (B∗, Fn

(
Ω; πk−1(N )

))
be the set of Lebesgue-measurablemaps S : B∗ → Fn(Ω; πk−1(N )), respectively
S : B∗ → Fn(Ω; πk−1(N )) (we use the notation y ∈ B∗ �→ Sy in both cases),
such that

‖S‖Y :=
ˆ

B∗
FΩ

(
Sy
)
dy < +∞, respectively ‖S‖Y :=

ˆ
B∗

F
(
Sy
)
dy < +∞.

The sets Y , Y are complete normedmoduli, with the norms ‖·‖Y , ‖·‖Y respectively.
The space Fn(Ω; πk−1(N )), respectively Fn(Ω; πk−1(N )), embeds canonically
into Y , respectively Y . If need be, we will identify a chain S ∈ Fn(Ω; πk−1(N ))

with an element of Y , i.e. the constant map y �→ S.
By [17, Theorem 3.1], there exists a unique operator

S :
(

L∞ ∩ W 1,k−1
) (

Ω, Rm)→ Y

that is continuous (if u j → u strongly in W 1,k−1(Ω) and sup j ‖u j‖L∞(Ω) < +∞,
then S(u j ) → S(u) in Y ) and satisfies

(P0) for any smooth u, a.e. y ∈ B∗ and any R ∈ Fk(R
n+k; Z) such that

M(R) + M(∂ R) < +∞, spt(R) ⊆ Ω , spt(∂ R) ⊆ Ω\ spt Sy(u), there holds

I
(
Sy(u), R

) = homotopy class of 
 ◦ (u − y) on ∂ R.
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We recall that I denotes the intersection index, defined as in [17, Section 2.1].

Proposition 3. There exists a (unique) continuous operator

S : W 1,k (Ω, Rm)→ Y

that satisfies (P0) and the following properties:

(P1) For any u ∈ (L∞ ∩ W 1,k)(Ω, Rm) and a.e y ∈ B∗, Sy(u) = Sy(u)

— more precisely, the chain Sy(u) belongs to the equivalence class Sy(u) ∈
Fn(Ω; πk−1(N )).
(P2) For any u ∈ W 1,k(Ω, Rm) and any Borel subset E ⊆ Ω , there holdsˆ

B∗
M
(
Sy(u) E

)
dy �

ˆ
E

|∇u|k .

(P3) If u0, u1 ∈ W 1,k(Ω, Rm) are such that u0|∂Ω = u1|∂Ω ∈ W 1−1/k,k

(∂Ω, N ) (in the sense of traces), then Sy0(u0) ∼Ω Sy1(u1) for a.e. y0, y1 ∈
B∗.

The proof of Proposition 3will be given inApprendixB. Taking account of (P1),
we abuse of notation andwriteS instead ofS fromnowon.As a consequence of (P3),
for any boundary datum v ∈ W 1−1/k,k(∂Ω, N ) there exists a unique cobordism
class C (Ω, v) ⊆ Mn(Ω; πk−1(N )) such that

Sy(u) ∈ C (Ω, v) (2.6)

for any u ∈ W 1,k(Ω, Rm) with trace v on ∂Ω and for a.e. y ∈ B∗.

2.4. The Γ -convergence Result

The main result of this paper is a generalisation of [2, Theorem 5.5]. We let
W 1,k

v (Ω, Rm) denote the set of maps u ∈ W 1,k(Ω, Rm) such that u = v on ∂Ω

(in the sense of traces).

Theorem C. Suppose that the assumptions (H1)–(H4) are satisfied. Then, the fol-
lowing properties hold:

(i) Compactness and lower bound. Let (uε)ε>0 be a sequence in W 1,k
v (Ω, Rm)

that satisfies supε>0 |log ε|−1 Eε(uε) < +∞. Then, there exists a (non rela-
belled) countable subsequence and a finite-mass chain S ∈ C (Ω, v) such
that S(uε) → S in Y and, for any open subset A ⊆ R

n+k ,

M(S A) � lim inf
ε→0

Eε (uε, A ∩ Ω)

|log ε| .

(ii) Upper bound. For any finite-mass chain S ∈ C (Ω, v), there exists a sequence
(uε) in W 1,k

v (Ω, Rm) such that S(uε) → S in Y and

lim sup
ε→0

Eε(uε)

|log ε| � M(S).
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Theorem A follows almost immediately from Theorem C, combined with gen-
eral properties of the Γ -convergence and standard facts in measure theory. There is
a variant of TheoremC for the problemwith no boundary conditions, which is anal-
ogous to [2, Theorem 1.1].Wewill say that a chain S is a finite-mass, n-dimensional
relative boundary if it has form S = (∂ R) Ω , where R ∈ Mn+1(R

n+k; πk−1(N ))

is such that M(∂ R) < +∞.

Proposition D. Suppose that the assumptions (H1)–(H3) are satisfied. Then, the
following properties hold:

(i) Compactness and lower bound. Let (uε)ε>0 be a sequence in W 1,k(Ω, Rm)

that satisfies supε>0 |log ε|−1 Eε(uε) < +∞. Then, there exists a (non re-
labelled) countable subsequence and a finite-mass, n-dimensional relative
boundary S such that S(uε) → S in Y and, for any open subset A ⊆ Ω ,

M(S A) � lim inf
ε→0

Eε (uε, A ∩ Ω)

|log ε| .

(ii) Upper bound. For any finite-mass, n-dimensional relative boundary S, there
exists a sequence (uε) in W 1,k(Ω, Rm) such that S(uε) → S in Y and

lim sup
ε→0

Eε (uε)

|log ε| � M(S).

Proposition D is not quite informative as it stands, because minimisers of the
functional (1.1) under no boundary conditions are constant. However, since Γ -
convergence is stable with respect to continuous perturbations, Proposition D can
be extended to non-trivial minimisation problems with lower-order terms or un-
der integral constraints, as long as these are compatible with the topology of Γ -
convergence.

2.5. A Few Examples

We illustrate our results by means of a few simple examples. If A ⊆ R
n+k is

an n-dimensional polyhedral (or smooth) set, with a given orientation, the unit-
multiplicity chain carried by A will be denoted �A� ∈ Mn(Rn+k; Z).

Example 2.1. First, we suppose the domain is the unit ball in the critical dimen-
sion, i.e. n = 0 and Ω = Bk , and consider the target N = S

k−1 ⊆ R
k .

We need to identify the class C (Ω, v) defined by (2.6). For simplicity, suppose
that the boundary datum v : ∂ Bk → S

k−1 is smooth, of degree d. (General data
v ∈ W 1−1/k,k(∂ Bk, Sk−1) could also be considered, by appealing to Brezis and
Nirenberg’s theory of the degree in VMO, [14]). Let u : Bk → R

k be any smooth
extension of v. Let y ∈ R

k be a regular value for u (i.e., det∇u(x) �= 0 for
any x ∈ u−1(y)) such that |y| < 1. Then, the inverse image u−1(y) consists of a
finite number points. Let r > 0 be a sufficiently small radius. By definition of S,
we have

Sy(u) =
∑

x∈u−1(y)

d(x)�x� ∈ M0

(
B̄k; Z

)
,
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where d(x) is the degree of the map (u − y)/|u − y| : ∂ Br (x) → S
k−1. The

class C (Ω, v) consists of all and only the chains that differ from Sy(u) by a
boundary. It is not difficult to characteriseC (Ω, v) using the following topological
property, which holds true for any (normed, Abelian) coefficient group G and any
connected, open set D ⊆ R

d .

Fact. Let T be a 0-chain of the form T =∑q
i=1 σ j �zi �, for z j ∈ D̄, σ j ∈ G. Then,

there exists R ∈ M1(D̄; G) such that ∂ R = T if and only if
∑q

j=1 σ j = 0.

For a proof of this fact, see e.g. [31, Proposition 2.7]. Now, Brouwer’s theory
of the degree (or Property (P0) above) implies that

∑
x∈u−1(y)

d(x) =
∑

x∈u−1(y)

sign(det∇u(x)) = d,

therefore

C (Ω, v)=
⎧⎨
⎩

q∑
j=1

σ j �z j � : q ∈N,
(
σ j
)q

j=1∈Z
q , (z j )

q
j=1∈

(
B̄k
)q

,

q∑
j=1

σ j =d

⎫⎬
⎭ .

In agreement with the Ginzburg–Landau theory, mass-minimising chains in C
(Ω, v) consist of exactly |d| points, with multiplicities equal to 1 or −1 according
to the sign of d. This argument extends to more general manifolds N , with no
essential change; we obtain

C (Ω, v) =
⎧⎨
⎩

q∑
j=1

σ j �z j � : q ∈ N, σ j ∈ πk−1(N ), z j ∈ B̄k,

q∑
j=1

σ j = σ

⎫⎬
⎭,

where σ ∈ πk−1(N ) is the homotopy class of the boundary datum v : ∂ Bk →
N . Mass-minimising chains in C (Ω, v) have the form

∑q
j=1 σ j �z j �, where the

multiplicities σ j belong to the setS defined in (2.4) and satisfy
∑q

j=1 Emin(σ j ) =
|σ |∗.
Example 2.2. Next, we discuss the case n = 1,Ω = Bk+1. Suppose that the bound-
arydatumv : ∂ Bk+1 → N is smooth, except for finitelymany isolated singularities
at the points x1, …, x p. Let D1, …, Dp be pairwise-disjoint closed geodesic disks
in ∂ Bk+1, centred at the points x1, …, x p. Each Di is given the orientation induced
by the outward-pointing unit normal to Bk+1. Using orientation-preserving coor-
dinate charts, we may identify v|∂ Di : ∂ Di → N with a map S

k−1 → N ; the
homotopy class of the latter is an element of πk−1(N ), which we denote σi . The
coefficents σi must satisfy the topological constraint

p∑
i=1

σi = 0. (2.7)

Indeed, let D+ ⊆ ∂ Bk+1 be a small geodesic disk that does not contain any singular
point xi , and let D− := ∂ Bk+1\D+. Topologically, D− is a disk which contains
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all the singular points of v; therefore, the homotopy class of v restricted to ∂ D− is
the sum of all the σi ’s above. However, the homotopy class of v on ∂ D+ must be
trivial, because v is smooth in D+. Thus, (2.7) follows.

We consider the chain

Sbd(v) :=
p∑

i=1

σi �xi � ∈ M0(∂Ω; πk−1(N )).

Thanks to (2.7), Sbd(v) is the boundary of some 1-chain supported in B̄k+1. More
precisely, let u ∈ W 1,k(Bk+1, Rm) be any extension of v. The results of [17] (see,
in particular, Proposition 1, Proposition 3 and Lemma 18) imply that

∂Sy(u) = Sbd(v)

for a.e. y ∈ R
m of norm small enough. Chains in the same homology class have

the same boundary; therefore, for any chain T ∈ C (Ω, v), there holds ∂T =
Sbd(v). Conversely, two chains in B̄k+1 that have the same boundary belong to
same homology class (relative to B̄k+1), because the domain B̄k+1 is contractible.
As a consequence, we have

C (Ω, v) =
{

T ∈ M1(Ω; πk−1(N )) : ∂T = Sbd(v)
}
. (2.8)

In particular, mass-minimising chains in C (Ω, v) will be carried by a finite union
of segments, connecting the singularities of the boundary datum according to their
multiplicities. In case N = S

k−1, such union of segments realises a ‘minimising
connection’, in the sense of Brezis et al. [13]. For k = 2 and N = RP2, the
condition (2.7) implies that v has an even number of non-orientable singularities;
mass-minimising chains connect the non-orientable singularities in pairs.

The characterisation (2.8) extends to general data v ∈ W 1−1/k,k(∂ Bk+1, N ),
provided that we define Sbd(v) in a suitable way (see [17, Section 3]). It also extend
to more general domains Ω ⊆ R

n+k , so long as the n-th homology group Hn

(Ω; πk−1(N )) is trivial.

Example 2.3. If the domain has a non-trivial topology, then C (Ω, v) may contain
non-trivial chains even if the boundary datum is smooth. For instance, take n = 1,
k = 2, N = S

1. Let Ω ⊆ R
3 be a solid torus of revolution, defined as the image

of the map Ψ : B2 × R → R
3,

Ψ (x, θ) :=((x1 + 2) cos θ, (x1+2) sin θ, x2) for x =(x1, x2)∈ B2, θ ∈ R.

We consider the smooth map u : Ω → R
2 given by u(Ψ (x, θ)) := x for (x, θ) ∈

B2 × R. The trace of u at the boudary, v, takes its values in S
1 and its restriction

on each meridian curve of the torus ∂Ω has degree 1. Therefore, C (Ω, v) is the
homology class of �u−1(0)� ∈ M1(Ω; Z), where u−1(0) is the zero-set of u (i.e. the
circleΨ ({(0, 0)}×R))with the orientation induced byΨ . The elements ofC (Ω, v)

can be characterised by means of the intersection index I. More precisely, let D
be the closure of Ψ (B2 × {0}). D is a 2-disk in the plane orthogonal to (0, 1, 0);
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we give D the orientation induced by (0, 1, 0). By the Poincaré-Lefschetz duality
(see e.g. [27, Theorem 3, p. 631]), for any T ∈ M1(Ω; Z) we have

T ∈ C (Ω, v) if and only if ∂T = 0 and I(T, �D�) = 1.

By a slicing argument, we deduce that the (unique) mass-minimising chain Smin
in C (Ω, v) is carried by an equator of ∂Ω:

Smin := �Ψ ({(−1, 0)} × R)�,

with the orientation induced byΨ . (See, e.g., [16, Section 5.4] for a similar example,
in case N = RP2.)

3. Upper Bounds

3.1. Notations and Sketch of the Construction

We say that a map u : Ω → R
m is locally piecewise affine if u is continuous

inΩ and, for any polyhedral set K ⊂⊂ Ω , the restriction u|K is piecewise affine. A
set P ⊆ Ω is called locally n-polyhedral if, for any compact set K ⊆ Ω , there exists
a finite union Q of convex, compact, n-dimensional polyhedra such that P ∩ K =
Q ∩ K . In a similar way, we say that a finite-mass chain S ∈ Mn(Ω; πk−1(N )) is
locally polyhedral if, for any compact set K ⊆ Ω , there exists a polyhedral chain T
such that (S − T ) K = 0. If M is a polyhedral complex and j � 0 is an integer,
we denote by M j the j-skeleton of M , i.e. the union of all its faces of dimension
less than or equal to j . We set M−1 := ∅.

Maps with nice and η-minimal singularities. To construct a recovery sequence,
we will work withN -valued maps with well-behaved singularities, in a sense that
is made precise by the definition below. Let M , S be polyhedral sets in R

n+k of
dimension n, n − 1 respectively, and let u : Ω ⊆ R

n+k → R
m .

Definition 3.1. ([1,2]) We say that u has a nice singularity at M if u is locally
Lipschitz on Ω\M and there exists a constant C such that

|∇u(x)| � C dist−1(x, M) for a.e. x ∈ Ω\M.

We say that u has a nice singularity at (M, S) if u is locally Lipschitz onΩ\(M ∪S)

and, for any p > 1, there is a constant C p such that

|∇u(x)| � C p

(
dist−1(x, M) + dist−p(x, S)

)
for a.e. x ∈ Ω\(M ∪ S).

We say that u has a locally nice singularity at M (respectively, at (M, S)) if, for any
open subset W ⊂⊂ Ω , the restriction u|W has a nice singularity at M (respectively,
at (M, S)).
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Fig. 1. The set U (K , δ, γ ), in case n = 1, k = 2 (left) and n = 2, k = 1 (right). In both
cases, the polyhedron K is in red

Remark 6. If u has a nice singularity at (M, S) then u ∈ W 1,k−1(Ω,Rm), since
both M and S have codimension strictly larger than k − 1 (see e.g. [2, Lemma 8.3]
for more details). In particular, if u : Ω → N has a nice singularity at (M, S),
thenSy(u) ∈ Fn(Ω; πk−1(N )) is well-defined for a.e. y ∈ B∗. Actually,Sy1(u) =
Sy2(u) for a.e. y1, y2 ∈ B∗ [17, Proposition 3], and we will write S(u) := Sy1(u) =
Sy2(u). The chain S(u) is supported on M , and its multiplicities coincide with the
homotopy class of u around each n-face of M (see [17, Lemma 18]).

Throughout Section 3, we will work with maps with nice (or locally nice) sin-
gularities. However, in order to obtain sharp energy estimates, we will need to
impose a further restriction on the behaviour of our maps near the singularities.
Let u : Ω → N be a map with nice singularity at (M, S), where M , S are polyhe-
dral sets of dimension n, n − 1 respectively. We triangulate M , i.e. we write M as
a finite union of closed simplices such that, if K ′, K are simplices with K �= K ′,
K ∩ K ′ �= ∅, then K ∩ K ′ is a boundary face of both K and K ′. Let K ⊆ M be a
n-dimensional simplex of the triangulation, and let K ⊥ be the k-plane orthogonal
to K through the origin. Given positive parameters δ, γ , we define the set

U (K , δ, γ ) :=
{

x ′ + x ′′ : x ′ ∈ K , x ′′ ∈ K ⊥, |x ′′| � min
(
δ, γ dist

(
x ′, ∂K

))}
(3.1)

(see Figure 1). We will identify each x ∈ U (K , δ, γ ) with a pair x = (x ′, x ′′),
where x ′, x ′′ are as in (3.1). By choosing δ, γ small enough (uniformly in K ), we
can make sure that the sets U (K , δ, γ ) have pairwise disjoint interiors.

Definition 3.2. Let u : Ω → N be a map with nice singularity at (M, S), and
let η > 0. We say that u is η-minimal if there exist positive numbers δ, γ , a
triangulation of M and, for any n-simplex K of the triangulation, a Lipschitz
map φK : Sk−1 → N that satisfy the following properties.

(i) If K ⊆ M , K ′ ⊆ M are n-simplices with K �= K ′, then U (K , δ, γ )

and U (K ′, δ, γ ) have disjoint interiors.
(ii) For any n-dimensional simplex K ⊆ M and a.e. x = (x ′, x ′′) ∈ U (K , δ, γ ),

we have u(x) = φK (x ′′/|x ′′|).
(iii) For any n-dimensional simplex K ⊆ M and any map ζ ∈ W 1,k(Sk−1, N )

that is homotopic to φK , we haveˆ
Sk−1

|∇�φK |k dH k−1 �
ˆ
Sk−1

|∇�ζ |k dH k−1 + η.
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The operator ∇� is the tangential gradient on S
k−1, i.e. the restriction of the Eu-

clidean gradient ∇ to the tangent plane to the sphere.

Remark 7. Thanks to the Sobolev embedding W 1,k(Sk−1, N ) ↪→ C(Sk−1, N ),
smooth maps are dense in W 1,k(Sk−1, N ). Therefore, for any η > 0 and any
homotopy class σ ∈ πk−1(N ), there exists a smooth map φ : Sk−1 → N in the
homotopy class σ that satisfies

ˆ
Sk−1

|∇�φ|k dH k−1 �
ˆ
Sk−1

|∇�ζ |k dH k−1 + η (3.2)

for any ζ ∈ W 1,k(Sk−1, N ) ∩ σ .

Remark 8. It is possible to find C1-maps that satisfy a stronger version of (3.2),
with η = 0. Indeed, the compact Sobolev emebedding W 1,k(Sk−1, N ) ↪→
C(Sk−1, N ) implies that homotopy classes of maps S

k−1 → N are sequen-
tially closed with respect to the weak W 1,k-convergence. Then, for each homotopy
class σ ∈ πk−1(N ), there exists a map φσ the minimises the Lk-norm of the
gradient in σ . The map φσ solves the k-harmonic map equation and, by Sobolev
embedding, is continuous. Then, regularity results for k-harmonic maps (e.g. [24,
Proposition 5.4]) imply that φσ ∈ C1,α(Sk−1, N ). However, the weaker condi-
tion (3.2) is enough for our purposes.

Construction of a recovery sequence: a sketch. In most of this section, we fo-
cus on the proof of Theorem C.(ii), i.e. we study the problem in the presence of
boundary conditions; only at the end of section, we present the proof of Propo-
sition D.(ii). As in [2], in order to define a recovery sequence, we first con-
struct a map w : Ω → N with (locally) nice singularity and prescribed singular
set S(w) = S. However,w must also satisfy the boundary condition,w = v on ∂Ω ,
where v ∈ W 1−1/k,k(∂Ω, N ) is a datum. This boundary condition makes the con-
struction of w substantially harder. For such a w to exists, we need a topological
assumption on S, namely, that S belongs to the homology class (2.6) determined
by Ω and v. Our approach is rather different from that of [2, Theorem 5.3]. In [2],
the authors first construct w inside Ω , then interpolate near ∂Ω , using the symme-
tries of the target Sk−1, so as to match the boundary datum. On the contrary, we
start from a map that satifies the boundary conditions and we modify it inside Ω

so to obtain S(w) = S. Before giving the details, we sketch the main steps of our
construction.

First,we consider a locally piecewise affine extensionu∗ ∈ (L∞∩W 1,k)(Ω, Rm)

of v. Since we have assumed thatX is polyhedral, the singular set Sy(u∗) will be
locally polyhedral, for a.e. y. By projecting u∗ ontoN (using Hardt et al. [29],
see Section 3.3), we define a map w∗ : Ω → N such that w∗ = v on ∂Ω ,
S(w∗) = Sy(u∗) (for a well-chosen y) is locally polyhedral, and w∗ has a locally
nice singularity at spt S(w∗). We cannot make sure that the singularity is nice up
to the boundary of Ω , because the boundary datum is not regular enough.

Let S be a finite-mass n-chain in the homology class C (Ω, v) defined by (2.6).
Thanks to (P3), we know that S(w∗) = Sy(u∗) ∈ C (Ω, v) and hence, S(w∗) and S
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Fig. 2. Sketch of the construction of a recovery sequence. Inside WS, the chain S (in red)
takes multiplicities in the set S ⊆ πk−1(N ). Outside W , the original map w∗ and the
modified map w coincide

differ by a boundary. By approximation (see Section 3.4.2), we reduce to the case

S = S(w∗) + ∂ R,

where R is a polyhedral (n +1)-chain with compact support inΩ . Actually, we can
make a further assumption on S. Let WS ⊂⊂ Ω be an open set, with polyhedral
boundary, whose closure contains the support of R (see Figure 2). Up to a density
argument (Proposition 6), we can assume that S WS takes its multiplicities
in the set S ⊆ πk−1(N ) defined by (2.4). Roughly speaking, we replace each
polyhedron K of S WS with a finite number of polyhedra, very close to each other,
whose multiplicities add up to the multiplicity of K . This is possible, because S
generatesπk−1(N ) by Proposition 1. The assumption on themultiplicity of S WS

turns out to be essential to obtain sharp energy bounds for our recovery sequence.
Let W be another open set, with polyhedral boundary, such that WS ⊂⊂ W ⊂⊂

Ω (see Figure 2). In particular, W contains the support of R. We aim to modify w∗
inside W , so to obtain a new map w : Ω → N with locally nice singularities
and S(w) = S(w∗)+ ∂ R = S. In other words, we need to “move” the singularities
of w∗ along the boundary of R. This is the key step in the construction. We achieve
this goal by a suitable generalisation of the so-called “insertion of dipoles”, Propo-
sition 4 in Section 3.2. For any (n + 1)-polyhedron T of R, we modify w∗ in a
neighbourhood of T by inserting anN -valued map that depends only on the k − 1
coordinates in the orthogonal directions to T . To define w near ∂T , we use radial
projections repeatedly, first onto the n-skeleton of T , then onto its (n −1)-skeleton,
and so on. Eventually, we obtain a map w : Ω → N that agrees with w∗ out of a
neighbourhood of spt R (in particular, it matches the boundary datum), has locally
nice singularities at S and satisfies S(w) = S. By local surgery ([2, Lemma 9.3],
stated below as Lemma 6), we can also make sure that w|W is η-minimal.

The map w does not belong to the energy space W 1,k(Ω, Rm), unless S = 0,
because it has a singularity of codimension k. Therefore, we must regularise w to
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construct a recovery sequence. For x ∈ W , we define

uε(x) := min

(
dist(x, spt S)

ε
, 1

)
w(x).

Since w is η-minimal in W , a fairly explicit computation allows us to estimate
the energy of uε on W , in terms of the area of spt S and the maps φK given by
Definition 3.2. Moreover, for any simplex K of S WS, the multiplicity σK of S
at K belongs to S and hence,

1

k

ˆ
Sk−1

|∇�φK |k dH k−1 � |σK |∗ + η,

because ofDefinition 3.2 and (2.4). Thanks to this inequality,we can indeed estimate
Eε(uε, W ) in terms of the mass of S, up to remainder terms that can be made
arbitrarily small. However, this approach is not viable near the boundary of Ω ,
because the regularity of w degenerates near ∂Ω . Instead, we define uε on Ω\W
by adapting [49, Proposition 2.1], see Section 3.3. The two pieces—inside and
outside W—are glued together by linear interpolation.

3.2. Insertion of Dipoles Along a Simplex

Our next result, Proposition 4, is the main building block in the construction of
the recovery sequence.

Proposition 4. Let D ⊆ R
n+k be a bounded domain. Let Σ ⊆ D be a polyhedral

set of dimension n, and u ∈ W 1,k−1(D, N ) a map with nice singularity at Σ .
Let T ⊂⊂ D be an oriented simplex of dimension n + 1 and σ ∈ πk−1(N ). Then,
there exists a map ũ ∈ W 1,k−1(D, N ), with nice singularity at a polyhedral set of
dimension n, such that ũ = u in a neighbourhood of ∂ D and S(ũ) = S(u)+σ∂�T �.

Perhaps it is worth commenting on the assumptions of Proposition 4. In terms
of regularity of N , we do not need to work with smooth manifolds: a compact,
connected Lipschitz neighbourhood retract would do. The assumption that N is
(k − 2)-connected could also be relaxed. (k − 2)-connectedness is used in [17,
47] to construct S(u) for arbitrary u ∈ W 1,k−1(Ω, N ); however, if u has nice
singularities andπk−1(N ) is Abelian, then S(u) can be defined in a straightforward
way. On the other hand, we must assume that N is (k − 1)-free (that is, the
fundamental group ofN acts trivially onπk−1(N )). ShouldN not be (k−1)-free,
we could not identify free homotopy classes of maps Sk−1 → N with elements
of πk−1(N ). In this case, the product of free homotopy classes Sk−1 → N is
multi-valued and hence, the equality S(ũ) = S(u) + σ∂�T � may fail.

The proof of Proposition 4 (see Figure 3) is based on a construction known
as “insertion of dipoles”. Several variants of this construction are available in the
literature (see e.g. [6,7,13,27,47]), but all of them rely of the following fact: a
map Bk−1 → N that takes a constant value on ∂ Bk−1 may be identified with a
map S

k−1 → N , by collapsing the boundary of the disk to a point. As a con-
sequence, if a continuous map φ : Bk−1 → N is constant on ∂ Bk−1, then we
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(a)

(c) (d)

(b)

Fig. 3. Idea of the proof of Proposition 4: an example with k = 2, n = 0 andN = S
1. The

initial map u is plotted in (a); the values of u are represented by the colour code. We aim to
insert singularities of degrees 1, −1 at the points x+, x−. First, we reparametrise u, creating
a ‘slit’ along the segment of endpoints x+ and x− (b). Then, we fill the slit by inserting a
map that winds around the circle exactly once, as we move in the direction orthogonal to the
segment of endpoints x+, x− (c). Finally, we define ũ in the disks V+, V− in such away that ũ
is homogeneous inside each disk (d). The newmap ũ behaves as required. For instance, there
are exactly three yellow points on ∂V+; as we move anticlockwise around ∂V+, two of them
carry the orientation ‘from red to blue’ and the other one carries the opposite orientation
‘from blue to red’. If we orient the target S1 ‘from red to yellow to blue’, then the degree
of ũ on ∂V+ is 1

may define the homotopy class of φ as an element of πk−1(N ). (In principle,
we should distinguish between free or based homotopy, according to whether the
boundary value of φ is allowed to vary during the homotopy or not; however, the
assumption (H2) guarantees that these two notions are equivalent.)

Lemma 1. Let K be a convex polyhedron, let h : K → N be a Lipschitz map, and
let σ ∈ πk−1(N ). Then, there exists a Lipschitz map u : K × Bk−1 → N such
that

u(x ′, x ′′) = h(x ′) for any (x ′, x ′′) ∈ K × ∂ Bk−1 (3.3)

and, for any σ ∈ πk−1(N ), the homotopy class of u(x ′, ·) is σ .

The proof of Lemma 1 is completely standard, but we provide it for the sake of
convenience.

Proof of Lemma 1. We choose a point x ′
0 ∈ K and consider the map ψ : [0, 1] ×

K → K as ψ(t, x ′) := t x ′ + (1 − t)x ′
0. We define u : K × (Bk−1\Bk−1

1/2 ) → N
as

u
(
x ′, x ′′) := (h ◦ ψ)

(
2|x ′′| − 1, x ′) for x ′ ∈ K , 1/2 �

∣∣x ′′∣∣ � 1.

The map u is Lipschitz and satisfies (3.3); moreover, for
∣∣x ′′∣∣ = 1/2 we have

u(x ′, x ′′) = h(x ′
0). Now, we take a smooth map φ : Bk−1 → N that is con-

stant on ∂ Bk−1 — say, φ = z0 ∈ N on ∂ Bk−1 — and has homotopy class σ .
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Fig. 4. The set V (K , δ, γ ), in case n = 1, k = 2 (left) and n = 2, k = 1 (right). In both
cases, the polyhedron K is in pink and K̃ is in red

Let ζ : [0, 1] → N be a Lipschitz curve with ζ(0) = z0, ζ(1) = h(x ′
0). We

define u : K × Bk−1
1/2 → N as

u
(
x ′, x ′′) :=

{
ζ
(
4
∣∣x ′′∣∣− 1

)
if 1/4 �

∣∣x ′′∣∣ < 1/2

φ
(
4x ′′) if

∣∣x ′′∣∣ < 1/4.

For any x ′ ∈ K , the map u(x ′, ·) is (freely) homotopic to σ , via a reparametrisation
and a change of base-point. Therefore, the homotopy class of u(x ′, ·) is σ . ��
Proof of Proposition 4. We triangulate Σ ∪ T , that is, we write Σ ∪ T as a finite
union of closed simplices in such a way that, for any simplices K , K ′ with K �= K ′,
K ∩ K ′ is either empty or a boundary face of both K and K ′. We denote by Tn

the n-skeleton of this triangulation (i.e., the union of all simplices of dimension n
or less). We will construct a sequence of maps un+1, un , …, u1, u0 by modifying
the given map u first along the simplices of dimension n + 1 that are contained
in T , then along those of dimension n, and so on. In order to do so, we first need to
construct a suitable covering of T .

Step 1. (Construction of a covering of T ) Let K ⊆ T be a simplex of dimension j >

0. Let K ⊥ be the orthogonal (n + k − j)-plane to K through the origin. We fix
positive numbers δK , γK and define

K̃ := {x ′ ∈ K : dist
(
x ′, ∂K

)
> γK

}
, (3.4)

VK :=
{

x ′ + x ′′ : x ′ ∈ K̃ , x ′′ ∈ K ⊥, |x ′′| < δK

}
, (3.5)

ΓK :=
{

x ′ + x ′′ : x ′ ∈ K̃ , x ′′ ∈ K ⊥, |x ′′| = δK

}
(3.6)

(see Figure 4). If K is a 0-dimensional simplex, i.e. a point, we define VK :=
Bn+k(K , δK ) and ΓK := ∂VK . By choosing δK , γK in a suitable way, we can
make sure that the following properties are satisfied:

(a) VK ⊂⊂ D for any simplex K ⊆ T .
(b) For any j-dimensional simplex K ⊆ T , we have

∂VK \ΓK ⊆
⋃

K ′⊆T : dim K ′< j

VK ′

(in case j = 0, both sides of the inclusion are empty).
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Fig. 5. The covering of T , in case n = 1 and k = 2 (view from the top). The set Σ is in
green

(c) For any simplices K ⊆ T , K ′ ⊆ T with K �= K ′, dim K = dim K ′, we have
VK ∩ VK ′ = ∅.

(d) For any simplices K ⊆ T , K ′ ⊆ Σ ∪ T with K �⊆ K ′, we have VK ∩ K ′ = ∅.
(e) No simplex K ⊆ T is entirely contained in ∪{VK ′ : dim K ′ < dim K }.
Property (b) implies that the VK ’s do cover T . To construct a covering that satis-
fies (a)–(e), we first cover the 0-skeleton of T by pairwise disjoint balls that are
compactly contained in D. Then, we cover each 1-dimensional simplex in T by a
“thin cylinder”, whose bases are contained in the balls we have chosen before. Next,
we cover each 2-dimensional simplex by a “thin shell”, and so on, as illustrated in
Figure 5. At each step, we can make sure that the properties (a)–(e) are satisfied,
because the simplices have pairwise disjoint interiors and only intersect along their
boundaries. As a consequence of (d), for any simplex K ⊆ T it holds that

{
VK ∩ (Σ ∪ Tn) = ∅ if dim K = n + 1

ΓK ∩ (Σ ∪ Tn) = ∅ if dim K = n.
(3.7)

For any integer j ∈ {0, 1, . . . , n + 1}, we define

V = j :=
⋃

K⊆T : dim K= j

VK , V < j :=
j−1⋃
i=0

V =i , V � j :=
n+1⋃
i= j

V =i
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and V <0 := ∅.
Step 2. (Construction of un+1) Let K ⊆ T be a (n+1)-simplex of the triangulation,
with the orientation induced by T .We identify VK with K̃ × Bk−1(0, δK ), where K̃
is given by (3.4). We construct a Lipschitz map un+1

K : VK → N as follows. First,
we let

un+1
K

(
x ′, x ′′) := u

(
x ′, 2x ′′ − δK x ′′

|x ′′|
)

for x ′ ∈ K̃ , δK /2 � |x ′′| � δK .

(3.8)
Thus, un+1

K = u on ΓK , while un+1
K (x ′, x ′′) = u(x ′, 0) for |x ′′| = δK /2. Since the

trace of un+1
K on K̃ × ∂ Bk−1(0, δK /2) only depends on the variable x ′, we may

apply Lemma 1 and define un+1
K in K̃ × Bk−1(0, δK /2) in such a way that, for

any x ′ ∈ K̃ ,

the homotopy class of un+1
K

(
x ′, ·)|Bk−1(0, δK /2) is (−1)n+1σ. (3.9)

The sign (−1)n+1 will be useful to compensate for orientation effects, later on in
the proof.

We define a map

un+1 :
(

D\V <n+1
)

∪ V =n+1 → N

as follows: un+1(x) := un+1
K (x) if x ∈ VK for some (n + 1)-simplex K , and un+1

(x) := u(x)otherwise. This definition is consistent. Indeed, the setsVK are pairwise
disjoint, due to (c). Moreover, if a point x belongs both to VK and to D\V <n+1,
then x ∈ ΓV because of (b), so un+1

K (x) = u(x) by (i). Therefore, the map un+1 is
well-defined and locally Lipschitz out of Σ , with nice singularity at Σ .

Step 3. (Construction of un) Let K ⊆ T be a n-simplex. We identify VK with K̃ ×
Bk(0, δK ). The map un+1 is Lipschitz continuous on ΓK , due to (3.7). Let σK ∈
πk−1(N ) be the homotopy class of un+1 on an arbitrary slice of ΓK , of the
form {x ′} × ∂ Bk(0, δK ). If σK = 0 then, by adapting the arguments of Lemma 1,
we can construct a Lipschitz continuous map un

K : VK → N such that un
K = un+1

on ΓK . If σK �= 0, we define un
K : VK → N as

un
K

(
x ′, x ′′) := un+1

(
x ′, δK x ′′

|x ′′|
)

for
(
x ′, x ′′) ∈ K̃ × Bk (0, δK ) .

In both cases, by a straightforward computation, we obtain∣∣∇un
K

(
x ′, x ′′)∣∣ � |x ′′|−1 for a.e.

(
x ′, x ′′) ∈ K̃ × Bk (0, δK ) , (3.10)

where the proportionality constant at the right-hand side depends on δK and un+1.
We define

un : (D\V <n) ∪ V �n → N

as follows: un(x) := un
K (x) if x ∈ VK for some n-simplex K , and un(x) :=

un+1(x) otherwise. Thanks to (b), (c) and (3.10), we can argue as in Step 2 and
check that un is locally Lipschitz out of Σ ∪ Tn , with nice singularity at Σ ∪ Tn .
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Step 4. (Construction of u j for j < n)Weproceed by induction. Let j ∈ {0, 1, . . . ,

n − 1}. Suppose we have constructed a map

u j+1 :
(

D\V < j+1
)

∪ V � j+1 → N

that is locally Lipschitz out ofΣ∪Tn and has a nice singularity atΣ∪Tn . Let K ⊆ T
be a j-simplex. By identifying VK with K̃ × Bn+k− j (0, δK ), we define u j

K : VK →
N ,

u j
K

(
x ′, x ′′) := u j+1

(
x ′, δK x ′′

|x ′′|
)

for
(
x ′, x ′′) ∈ K̃ × Bn+k− j (0, δK ) .

The map u j
K is locally Lipschitz out of the set

A :=
{(

x ′, x ′′) ∈ K̃ × Bn+k− j (0, δK ) :
(

x ′, δK x ′′

|x ′′|
)

∈ Σ ∪ Tn

}
.

By Property (d), the only simplices of Σ ∪ Tn that intersect V K are those that
contain K . Therefore, if H1, H2,…, Hp denote then-dimensional (closed) simplices
of Σ ∪ Tn that contain K , then

(Σ ∪ Tn) ∩ VK =
p⋃

i=1

(
Hi ∩ VK

)
(3.11)

Moreover, Property (d) and the convexity of Hi imply that

Hi ∩ VK = K̃ ×
(

H̃i ∩ B̄n+k− j (0, δK )
)
, (3.12)

where H̃i ⊆ R
n+k− j is a cone (i.e., λx ∈ H̃i for any x ∈ H̃i and any λ � 0). As a

consequence,

A
(3.11), (3.12)=

p⋃
i=1

(
K̃ × (H̃i ∩ Bn+k− j (0, δK ))

)
(3.12)=

p⋃
i=1

(Hi ∩ VK )

(3.11)= (Σ ∪ Tn) ∩ VK ,

that is, u j
K is locally Lipschitz out of Σ ∪ Tn . We claim that

|∇u j
K (x)| � dist−1(x, Σ ∪ Tn) for a.e. x ∈ VK , (3.13)

where the proportionality constant at the right-hand side may depend on δK . Given
x = (x ′, x ′′) ∈ VK , let y(x) := (x ′, δK x ′′/

∣∣x ′′∣∣). By the induction hypothesis,
u j+1 has a nice singularity at Σ ∪ Tn . Therefore, an explicit computation gives

|∇u j
K (x)| � |x ′′|−1 dist−1 (y(x), Σ ∪ Tn) (3.14)
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K̃

VK

Σ ∪ Tn

y(x)

x

dist(x, Σ ∪ Tn)

|x′′|

δK

dist(y(x), Σ ∪ Tn)

Fig. 6. Proof of (3.15). The picture represents a slice of VK , of the form {x ′} ×
Bn+k− j (0, δK )

for a.e. x ∈ VK . By (3.11) and (3.12), the set Σ ∪ Tn agrees with K̃ × ∪i H̃i in VK ,
and ∪i H̃i is a cone. Then, by a geometric argument (see Figure 6), we have∣∣x ′′∣∣

dist (x, Σ ∪ Tn)
= δK

dist (y(x), Σ ∪ Tn)
(3.15)

By combining (3.14) and (3.15), (3.13) follows. Finally, we define

u j :
(

D\V < j
)

∪ V � j → N

as follows: u j (x) := u j
K (x) if x ∈ VK for some j-simplex K ⊆ T , and u j (x) :=

u j+1(x) otherwise. Thanks to (b), (c) and (3.13), themap u j is well-defined, locally
Lipschitz out of Σ ∪ Tn and has a nice singularity at Σ ∪ Tn .

Step 5. (Conclusion) By induction, we have constructed a sequence of maps un+1,
un , …, u1, u0. Let ũ := u0 : D → N . By construction, the map ũ has a nice
singularity atΣ ∪Tn and agrees with u out of V <n+1∪V =n+1. In particular, ũ = u
in a neighbourhood of ∂ D, because of (a).

It only remains to compute S(ũ). Let K be an n-simplex of T . By Property (e),
K is not entirely contained in V <n ; we take a point x ∈ K\V <n . Let K ⊥ be the
orthogonal k-plane to K at x , and let F := VK ∩ K ⊥. By Property (d), the only
(n+1)-simplices that intersect F are those that contain K ; we call them H1,…, Hp.
We consider the restriction of ũ to the (k −1)-sphere ∂ F . By construction (see (3.8)
and (3.9) in Step 2), ũ|∂ F consists (up to homotopy) of a reparametrisation of u|∂ F ,
with the insertion of ‘bubbles’ around the points ∂ F ∩ Hi . Each bubble carries the
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homotopy class σ or −σ , depending on the orientation of Hi (which, we recall,
is the one induced by T ). The net topological contribution of all the bubbles may
vanish or not, depending on whether the point x belongs to the boundary of T or
not. As a result, we have(

homotopy class of ũ|∂ F : ∂ F 	 S
k−1 → N

)

=
(
homotopy class of u|∂ F : ∂ F 	 S

k−1 → N
)

+ σ
(
multiplicity of ∂�T � at x

)
.

The sign of the second term in the right-hand side depends on the choice of the sign
we made in Equation (3.9) (see, for instance, Property (iv) in Lemma 8 of [17]).
Then, by Remark 6, S(ũ) = S(u) + σ∂�T �. ��

3.3. Projection of a W 1,k-map onto N

Before we pass to the construction of a recovery sequence, we gather some
useful results, based on earlier work by Hardt et al. [29, Lemma 2.3], [30], and
Rivière [49, Proposition 2.1]; see also [2, Proposition 6.4] for similar statements
in case N = S

k−1.
For any y ∈ R

m , we consider the map 
̃y : z �→ 
(z − y) which is well defined
for z ∈ R

m\(X + y). This is not a retraction onto N , in general, because it does
not restrict to the identity onN . However, for sufficiently small |y|—say, y ∈ Bm

σ

with σ > 0 small enough — the restriction 
̃y|N is a small perturbation of the
identity and, in particular, it is a diffeomorphism. For y ∈ Bm

σ and z ∈ R
m\(X +y),

let us define

y(z) :=

((

̃y|N

)−1 ◦ 

)

(z − y). (3.16)

This map is indeed a smooth retraction of Rm\(X + y) onto N . We also define
a function ψ : Rm → R by

ψ(z) := min

{
dist(z, X )

dist(N , X )
, 1

}
for z ∈ R

m . (3.17)

The function ψ is Lipschitz and ψ = 1 on N . By Proposition 2 and (3.17), we
have ∣∣∇
y(z)

∣∣ � 1

dist(z − y, X )
� 1

ψ(z − y)
(3.18)

for any y ∈ Bm
σ and z ∈ R

m\(X + y). The proportionality constants here de-
pend on σ , but σ = σ(N , X , 
) is fixed once and for all. Finally, let ξε(t) :=
min(t/ε, 1) for t � 0.

Lemma 2. Let Λ be a positive number, and let u ∈ (L∞ ∩ W 1,k)(Ω, Rm) be such
that ‖u‖L∞(Ω) � Λ. For y ∈ Bm

σ , ε > 0 and x ∈ Ω , define

wy(x) := (
y ◦ u)(x), wε,y(x) := (ξε ◦ ψ)(u(x) − y) wy(x).

Then, the following properties hold:
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(i) For a.e. y ∈ Bm
σ , wy ∈ W 1,k−1(Ω, N ) and S(wy) = Sy(u).

(i) For a.e. y ∈ Bm
σ and sufficiently small ε, wε,y ∈ (L∞ ∩ W 1,k)(Ω, Rm) and

‖wε,y‖L∞(Ω) � max{|z| : z ∈ N }.
(iii) For any open set D ⊆ Ω , it holds thatˆ

Bm
σ

(
Eε(wε,y, D) + ε−kL n+k{x ∈ D : wε,y(x) �= wy(x)}

)
dy

� CΛ

(
|log ε| ‖∇u‖k

Lk (D)
+ L n+k(D)

)
,

where CΛ is a positive constant that only depends on N , k, X and Λ.
(iv) For a.e. y ∈ Bm

σ there exists a (non-relabelled) subsequence ε → 0 such that
wε,y → wy strongly in W 1,k−1(Ω, Rm).

Remark 9. Statement (iii) of Lemma 2 implies, via an averaging argument, that

inf
{

Eε(u) : u ∈ W 1,k
v

(
Ω, Rm)} � |log ε|

for any v ∈ W 1−1/k,k(∂Ω, N ) and any ε > 0.

Proof of Lemma 2. Throughout the proof, we denote by CΛ a generic positive
constant that only depends onN , k,X andΛ (andmay change fromone occurence
to the other).

Step 1. (Proof of (i)) For a.e. y, we have 
 ◦ (u − y) ∈ W 1,k−1(Ω, N ) (see e.g.
[17, Lemma 14] for a proof of this claim). Moreover, by Canevari and Orlandi
[17, Lemma 17] we know that

Sy′ (
 ◦ (u − y)) = Sy(u) for a.e. y, y′ ∈ Bm
σ .

Now,wy is obtained from 
◦(u − y) by composition with a map, (
̃y|N )−1, which
is homotopic to the identity onN . Therefore, from the identity above we obtain

Sy′(wy) = Sy(u) for a.e. y, y′ ∈ B∗. (3.19)

This can be first checked when u is smooth, using [17, Lemma 18], and remains
true for a general u by a density argument, using the continuity of S and e.g. [17,
Lemma 14].

Step 2. (Proof of (ii), (iii)) It is immediate to see that ‖wε,y‖L∞(Ω) � max{|z| : z ∈
N }. By (i), wε,y ∈ (L∞ ∩ W 1,k−1)(Ω, Rm) for a.e. y, and by the chain rule, we
have the pointwise bound∣∣∇wε,y(x)

∣∣ � CΛ

((
ξ ′
ε ◦ ψ

)
(u(x) − y) |∇u(x)| + (ξε ◦ ψ) (u(x) − y)

∣∣∇wy(x)
∣∣)

for a.e. x ∈ Ω . Thanks to (3.18), we deduce that

∣∣∇wε,y(x)
∣∣ � CΛ

((
ξ ′
ε ◦ ψ

)
(u(x) − y) + (ξε ◦ ψ) (u(x) − y)

ψ(u(x) − y)

)
|∇u(x)|

� CΛ

(1{ψ(u(x)−y)�ε}
ε

+ 1{ψ(u(x)−y)�ε}
ψ(u(x) − y)

)
|∇u(x)|

(3.20)
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(where, as usual, 1A denotes the characteristic function of a set A). On the other
hand, the L∞-norm of wε,y is uniformly bounded in terms of N only, and hence
it holds that

f
(
wε,y

)
� 1{wε,y �=wy} = 1{ψ(u−y)<ε}. (3.21)

Together, (3.20) and (3.21) imply that

Eε

(
wε,y, D

)+ ε−kL n+k {x ∈ D : wε,y(x) �= wy(x)
}

]quad � CΛ

ˆ
Ω

1{ψ(u(x)−y)�ε}
εk

dx

+ CΛ

ˆ
D

(1{ψ(u(x)−y)�ε}
εk

+ 1{ψ(u(x)−y)�ε}
ψ(u(x) − y)k

)
|∇u(x)|k dx

We integrate the previous inequality for y ∈ Bm
σ , apply Fubini theorem and make

the change of variable z = u(x) − y:

ˆ
Bm

σ

(
Eε

(
wε,y, D

)+ ε−kL n+k{x ∈ D : wε,y(x) �= wy(x)}
)
dy

� CΛ

ˆ
D

ˆ
Bm

σ+Λ

{(1{ψ(z)�ε}
εk

+ 1{ψ(z)�ε}
ψ(z)k

)
|∇u(x)|k + 1{ψ(z)�ε}

εk

}
dz dx .

SinceX is a finite union of simplices of codimension k or higher, for ε sufficiently
small it holds that

ˆ
Bm

σ+Λ

1{ψ(z)�ε} dz � CΛεk,

ˆ
Bm

σ+Λ

1{ψ(z)�ε}
ψ(z)k

dz � CΛ |log ε|

(see e.g. [2, Lemma 8.3]). As a consequence, we obtain (iii).

Step 3. (Proof of (iv)) For a.e. y ∈ Bm
σ , the set {ψ(u − y) = 0} = (u − y)−1(X )

has Lebesgue measure equal to zero (see e.g. [17, proof of Lemma 14]). Then,
since ξε → 1 pointwise on (0, +∞) as ε → 0, we have wε,y → wy a.e. as ε → 0,
for a.e. y. Using the chain rule, (3.18) and (3.20), we obtain that

∣∣∇wε,y(x) − ∇wy(x)
∣∣ � CΛ

(
1

ε
+ 1

ψ(u(x) − y)

)
1{ψ(u(x)−y)�ε} |∇u(x)|.

for a.e. x ∈ Ω . We raise both sides of this inequality to the (k − 1)-th power,
integrate over (x, y) ∈ Ω × Bm

σ , apply Fubini theorem and make the change of
variable z = u(x) − y:

ˆ
B∗

∥∥∇wε,y − ∇wy
∥∥k−1

Lk−1(Ω)
dy � CΛ

ˆ
Ω

ˆ
Bm

σ+Λ

(
1

εk−1

+ 1

ψ(z)k−1

)
1{ψ(z)�ε} |∇u(x)|k−1 dz dx .
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We apply [2, Lemma 8.3] to estimate the integral with respect to z: since X has
codimension k, we obtain

ˆ
Bm

σ+Λ

(
1

εk−1 + 1

ψ(z)k−1

)
1{ψ(z)�ε}dz � CΛε,

so ˆ
Bm

σ

∥∥∇wε,y − ∇wy
∥∥k−1

Lk−1(Ω)
dy � CΛε ‖∇u‖k−1

Lk−1(Ω)
.

By Fatou lemma, we deduce
ˆ

Bm
σ

lim inf
ε→0

∥∥∇wε,y − ∇wy
∥∥k−1

Lk−1(Ω)
dy = 0,

so (iv) follows. ��

3.4. Construction of a Recovery Sequence

3.4.1. Construction of an N -valued Map with Nice Singularity at a Locally
Polyhedral Set In this section, we give the construction of a recovery sequence.
We first construct a map Ω → N that matches the Dirichlet boundary datum and
has nice singularities along a locally polyhedral set.

Lemma 3. Any boundary datum v ∈ W 1−1/k,k(∂Ω, N ) can be extended to a map
u∗ ∈ (L∞ ∩W 1,k

v )(Ω, Rm) that satisfies the following properties, for a.e. y ∈ R
m:

(a) M(Sy(u∗)) < +∞ and Sy(u∗) ∂Ω = 0;
(b) the chain Sy(u∗) is locally polyhedral;
(c) the chain Sy(u∗) takes its multiplicities in a finite subset of πk−1(N ), which

depends only on N , 
, X ;
(d) there exists a locally (n − 1)-polyhedral set Py such that 
 ◦ (u∗ − y) has a

locally nice singularity at spt Sy(u∗) ∪ Py.

The proof of Lemma 3 relies on the following fact.

Lemma 4. Any boundary datum v ∈ W 1−1/k,k(∂Ω, Rm) has a locally piecewise
affine extension u∗ ∈ (L∞ ∩ W 1,k

v )(Ω, Rm).

We give a proof of Lemma 4, for the convenience of the reader only.

Proof of Lemma 4. Arguing component-wise,we reduce to the casem = 1. Let u ∈
W 1,k

v (Ω) be an extension of v. By a truncation argument, we canmake sure that v ∈
L∞(Ω). Let Γ1 := {x ∈ Ω : dist(x, ∂Ω) > 1/2} and, for any integer j � 2, let
Γ j := {x ∈ Ω : ( j +1)−1 < dist(x, ∂Ω) < ( j −1)−1}. Using a partition of unity,
we construct a sequence of smooth functionsϕ j ∈ C∞

c (Γ j ) such that
∑

j�1 ϕ j = 1.

Thanks to e.g. [53, Theorem 1], for any j there exists a triangulation T j of Rn+k

such that the piecewise affine interpolant u j of ϕ j u along T j is well-defined (that
is, all the vertices of T j are Lebesgue points of ϕ j u) and there holds

∥∥∇u j − ∇ (ϕ j u
)∥∥

Lk(Rn+k)
� 2− j . (3.22)
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Moreover, the proof of [53, Theorem 1] shows that for any r > 0, we can choose T j

such that all the simplices of T j have diameter � r . In particular, we can make
sure that u j is still supported in Γ j . Now, we define u∗ := ∑

j�1 u j . Since the
support of u j intersects the support of ui only for finitely many i , the function u∗
is locally piecewise affine. Moreover, u∗ ∈ L∞(Ω) because, by construction,∥∥u j
∥∥

L∞(Ω)
� ‖u‖L∞(Ω) for any j , and u ∈ W 1,k(Ω) due to (3.22). Finally, for

any N � 1 the function
∑N

j=1(u j − ϕ j u) is compactly supported in Ω , and hence∑N
j=1(u j − ϕ j u) ∈ W 1,k

0 (Ω). Passing to the limit as N → +∞, we conclude that

u∗ − u ∈ W 1,k
0 (Ω), and the lemma follows. ��

Proof of Lemma 3. Letu∗ be the locally piecewise extensionofv givenbyLemma4.
Statement (a) follows from (P2) in Proposition 3, because u∗ ∈ W 1,k(Ω, Rm).
Let K ⊆ Ω be a (closed) (n + k)-simplex such that u∗|K is affine. Since we have
assumed thatX is polyhedral, for any y ∈ R

m the inverse image (u∗−y)−1(X )∩K
is polyhedral too. Take y ∈ R

m such that (u∗ − y)|K is transverse to each cell
ofX . By [17, Corollary 1], we have Sy(u∗) K = Sy(u∗|K ) and by definition (see
[17, Section 3.2] and Section B below), the latter is a polyhedral chain supported
on (u∗ − y)−1(X )∩ K . Thus, Sy(u∗) is locally polyhedral. Moreover, Sy(u∗) take
its multiplicities in the set

{± (homotopy class of 
 around H) : H is a (m − k)-polyhedron of X } ,

which is a finite subset of πk−1(N ), because X is a finite union of polyhedra.
Finally, let us prove Statement (d). Take an open set W ⊂⊂ Ω , and take y ∈ R

m

such that u∗|W is transverse to each cell of X . Let K be a (n + k)-simplex such
that K ∩ W �= ∅ and u∗|K is affine. By transversality, we see that

dist (u∗(x) − y, X ) � CK ,y dist
(

x, (u∗ − y)−1 (X )
)

for any x ∈ K ,

where CK > 0 is a constant that depends on the (constant) gradient of u∗ on K and
on y. Since W is covered by finitely many simplices, we have

dist (u∗(x) − y, X ) � CW,y dist
(

x, (u∗ − y)−1 (X )
)

for any x ∈ W,

where CW,y := minK : K∩W �=∅ CK ,y > 0. Then, by applying the chain rule and
Proposition 2, we conclude that 
◦(u∗− y)|W has a nice singularity at (spt Sy(u∗)∪
Py) ∩ W , where Py := (u∗ − y)−1(Xm−k−1). ��

3.4.2. Reduction of the Problem Throughout the rest of Section 3, we fix the
boundary datum v ∈ W 1−1/k,k(∂Ω, N ) and let u∗ be the map given by Lemma 3.
We also fix y∗ ∈ R

m , with |y∗| sufficiently small, in such a way that Statements
(a)–(d) in Lemma 3 are satisfied. Letw∗ := 
y∗ ◦u∗, where 
y∗ is defined by (3.16).
By Lemma 3, the map w∗ has a locally nice singularity at spt Sy∗(u∗)∪ Py∗ , where
Py∗ is a locally polyhedral set of dimension n − 1. By Lemma 2, we can choose y∗
so to have w∗ ∈ W 1,k−1(Ω, N ) and S(w∗) = Sy∗(u∗) as well.
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Remark 10. For a generic map w ∈ W 1,k−1(Ω, Rm), S(w) is only well-defined
as a relative flat chain, S(w) ∈ Fn(Ω; πk−1(N )) (see [17, Section 3]). How-
ever, Sy∗(u∗) is well-defined as an element of Fn(Rn+k; πk−1(N )), because u∗ ∈
W 1,k(Ω, Rm) (see Proposition 3). With a slight abuse of notation, we will regard
S(w∗) as an element of Fn(Rn+k; πk−1(N )), too.

Let S be a finite-mass n-chain, supported in Ω , that is cobordant to S(w∗). By
definition of C (Ω, v), Equation (2.6), S and S(w∗) differ by a boundary. By an
approximation argument, we will reduce to the case S has a special form.

Proposition 5. Let S ∈ C (Ω, v) be a finite mass chain. Then, there exists a se-
quence of polyhedral (n + 1)-chains R j , with compact support in Ω , such that
S(w∗) + ∂ R j → S (with respect to the F-norm) and M(S(w∗) + ∂ R j ) → M(S)

as j → +∞.

The proof of Proposition 5 is left to Appendix D.1. Thanks to Proposition 5,
and a diagonal argument, we can assume with no loss of generality that S has the
form

S = S(w∗) + ∂ R, (3.23)

where R is a polyhedral (n + 1)-chain, compactly supported in Ω . There is one
further assumption we can make. Let WS ⊂⊂ Ω be an open set, with polyhedral
boundary, such that ∂WS is transverse to spt S (more precisely, there exist trian-
gulations of ∂WS and spt S such that any simplex of the triangulation of ∂WS is
transverse to any simplex of the triangulation of spt S) and

spt R ⊆ WS, S ∂WS = 0. (3.24)

The condition S ∂WS = 0 is satisfied because, by transversality, spt S ∩ ∂WS

has dimension (n − 1) or less and hence, it cannot support a non-trivial polyhedral
n-chain.

Proposition 6. There exists a sequence of polyhedral (n +1)-chains R j , supported
in WS, such that the following hold:

(i) S + ∂ R j → S, with respect to the F-norm, as j → +∞;
(ii) M(S + ∂ R j ) → M(S) as j → +∞;

(iii) for any j , (S + ∂ R j ) ∂WS = 0;
(iv) for any j , the chain (S + ∂ R j ) WS takes multiplicities in the set S ⊆

πk−1(N ) defined by (2.4).

The proof of Proposition 6 will be given in Appendix D.1. Thanks to Proposi-
tion 6, it is not restrictive to assume that

S WS takes its multiplicities in S, (3.25)

in addition to (3.23), (3.24). Indeed, if (3.24) does not hold, we replace S with with
a chain of the form S + ∂ R j as given by Proposition 6, we replace R with R + R j ,
then we use a diagonal argument to pass to the limit as j → +∞.



Giacomo Canevari & Giandomenico Orlandi

3.4.3. Construction of an N -valued Map with Prescribed Singular Set Our
next task is to construct a mapw : Ω → N , with locally nice singularities, in such
a way that S(w) = S. To do so, we fix an open set W ⊂⊂ Ω such that WS ⊂⊂ W
and ∂W is transverse to spt S (i.e., there exist triangulations of ∂WS and spt S such
that any simplex of the triangulation of ∂WS is transverse to any simplex of the
triangulation of spt S). We also fix a small parameter η > 0.

Lemma 5. For any W as above and any η > 0, there exists a map w ∈ W 1,k−1

(Ω, N ) that satisfies the following properties:

(i) w = w∗ a.e. in Ω\W ;
(ii) w has a locally nice singularity at (spt S, Q∗), where Q∗ ⊇ (spt S)n−1 is a

locally (n − 1)-polyhedral set;
(iii) S(w) = S;
(iv) w|W is η-minimal.

Lemma 5 follows from Proposition 4, combined with the following lemma
from [2]:

(Lemma 9.3, [2])
Lemma 6. Let K ⊆ R

n+k be a n-simplex, and let δ, γ be positive parameters.
Let u : U (K , δ, γ ) → N be a map with nice singularity at K , and let σ ∈

πk−1(N ) the homotopy class of u around K . Let φ : Sk−1 → N be a Lipschitz
map in the homotopy class σ . Then, there exists a map ũ : U (K , δ, γ ) → N that
satisfies the following properties:

(i) ũ = u on ∂U (K , δ, γ );
(ii) ũ has a nice singularity at (K , ∂K );

(iii) S(ũ) = S(u);
(iv) ũ(x) = φ(x ′′/|x ′′|) for any x = (x ′, x ′′) ∈ U (K , δ/4, γ /4).

In [2], this result is proved in the particular case N = S
k−1. However, the

same proof applies to a general target N : the map ũ is constructed by a suitable
reparametrisation of the domain U (K , δ, γ ), and the arguments do not rely on
properties of the targetN other than (Lipschitz) path-connectedness. Property (iii)
follows from Remark 6 and (ii), (iv).

Proof of Lemma 5. By (3.24), we have spt R ⊆ WS ⊆ W . By triangulating, we
can write R in the form

R =
q∑

i=1

σi �Ti �,

where the coefficients σi belong to πk−1(N ) and each Ti ⊂⊂ W is a convex
(n + 1)-simplex. We apply Proposition 4, so to modify w∗ in a neighbourhood
of T1. We obtain a new map w1 ∈ W 1,k(Ω, N ) that has a locally nice singularity
at spt S(w∗) ∪ (T1)n ∪ Py∗ (with (T1)n is the n-skeleton of a suitable triangulation
of T ), satisfies w1 = w∗ on Ω\W and S(w1) = S(w∗) + σ1 ∂�T1�. Now, we use
Proposition 4 to modify w1 in a neighbourhood of T2, and so on. By applying
iteratively Proposition 4, we construct a sequence of maps w1, w2, …, wq . The
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mapwq has a locally nice singularity at spt S(w∗)∪(spt R)n∪Py∗ , satisfieswq = w∗
on Ω\W and S(wq) = S(w∗) + ∂ R = S.

To complete the proof, it only remains to modify wq so as to satisfy (iv).
Since W ⊂⊂ Ω has polyhedral boundary, the restriction S W is a polyhedral
chain. Let K be a n-face of spt S(w∗) ∪ (spt R)n . The interior of K is contained
in W and hence, for sufficiently small parameters δ > 0, γ > 0, the interior
of U (K , δ, γ ) is contained in W . Let σK ∈ πk−1(N ) be the homotopy class
of wq around K . By Remark 7, there exists a smooth map φK : Sk−1 → N that
satisfies ˆ

Sk−1
|∇�φK |k dH k−1 �

ˆ
Sk−1

|∇�ψ |k dH k−1 + η

for any ψ ∈ W 1,k(Sk−1, N ) ∩ σK . If σK = 0, we choose φK to be constant.
We apply Lemma 6 to u = wq and φ = φK . By doing so for each K , we obtain
a map w : Ω → N that agrees with w∗ on Ω\W and is η-minimal on W . By
Remark 6, S(w) = S(wq) = S. Moreover, since φK is constant if σK = 0, w has a
locally nice singularity at (spt S, Q∗)where Q∗ := (spt S(w∗))n−1 ∪ (spt R)n−1 ∪
Py∗ . Therefore, w has all the desired properties. ��

3.4.4. ε-regularisation The map w : Ω → N given by Lemma 5 has a singu-
larity of codimension k at spt S, so w /∈ W 1,k(Ω, N ) unless S = 0. Therefore, in
order to define a recovery sequence, we need to regularise w around spt S. We do
so by defining the maps

wε(x) := min

{
dist(x, spt S)

ε
, 1

}
w(x) for any x ∈ Ω. (3.26)

Lemma 7. For sufficiently small ε, the map wε defined by (ii) belongs to (L∞ ∩
W 1,k

loc )(Ω, Rm). Moreover, the following properties holds:

(i) wε → w strongly in W 1,k−1
loc (Ω) as ε → 0.

(ii) For any open set D ⊂⊂ Ω with polyhedral boundary, it holds that

lim sup
ε→0

Eε(wε, D)

|log ε| � Cw,D M(S D),

where the constant Cw,D depends on the map w and on dist(D, ∂Ω).
(iii) We have

lim sup
ε→0

Eε(wε, W )

|log ε| � (1 + Cη)M(S W ) + C M(W\WS),

where C is a constant that depends only on N , X , 
 and k.

Proof. Let Zε := {x ∈ R
n+k : dist(x, spt S) < ε}, and let ζε be the characteristic

function of Zε (i.e. ζε := 1 on Zε, ζε := 0 elsewhere).
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Step 1. (Proof of (i)) Let D ⊂⊂ Ω be an open set. We choose a number p, with 1 <

p < (k + 1)/(k − 1). Since w has a locally nice singularity at (spt S, Q∗), at
a.e. point of D we have

|∇wε| �
(
dist(·, spt S)ζε

ε
+ 1 − ζε

)
|∇w| + ζε

ε

� Cw,D

((
dist(·, spt S)ζε

ε
+ 1 − ζε

) (
dist−1(·, spt S) + dist−p(·, Q∗)

)+ ζε

ε

)

� Cw,D

(
(1 − ζε) dist

−1(·, spt S) + dist−p(·, Q∗) + ζε

ε

)
,

(3.27)
where Cw,D is a constant that depends on w, dist(D, ∂Ω) and p, but not on ε.
Therefore,

ˆ
D∩Zε

|∇wε|k−1 � Cw,D

(ˆ
D∩Zε

dist p−kp(x, Q∗) dx + L n+k(D ∩ Zε)

εk−1

)
.

By our choice of p, we have p − kp > −(k +1). Since Q∗ has codimension k +1,
[2, Lemma 8.3] implies that the function dist p−kp(·, Q∗) is integrable and that

L n+k(Zε) � εk . (3.28)

As a consequence, we have

ˆ
D

|∇(w − wε)|k−1 �
ˆ

D∩Zε

|∇w|k−1 +
ˆ

D∩Zε

|∇wε|k−1 → 0

as ε → 0, and (i) follows.

Step 2. (Proof of (ii)) Let D ⊂⊂ Ω and 1 < p < 1+1/k. From (3.27), we deduce

Eε(wε, D) � Cw,D

(ˆ
D\Zε

dist−k(x, spt S) dx +
ˆ

D
dist−kp(x, Q∗) dx

+L n+k(D ∩ Zε)

εk

)

The second and third term at the right-hand side are uniformly boundedwith respect
to ε → 0, due to [2, Lemma 8.3] and (3.28). Since spt S ∩ D is contained in a finite
union of polyhedra of codimension k or higher and D has polyhedral boundary, a
computation based on Fubini theorem gives

lim sup
ε→0

1

|log ε|
ˆ

D\Zε

dist−k(·, spt S) � H n(spt S ∩ D).

On the other hand, H n(spt S ∩ D) � M(S D) because the coefficient group
(πk−1(N ), | · |∗) is discrete (Proposition 1). Thus, (ii) follows (and in particular,
wε ∈ W 1,k

loc (Ω, Rm)).



Topological Singular Set of Vector-Valued Maps, II

Step 3. (Proof of (iii)) The inequality (3.28) implies

lim sup
ε→0

1

|log ε| εk

ˆ
W

f (wε) � lim sup
ε→0

L n+k(Zε)

|log ε| εk
= 0, (3.29)

so we only need to estimate the gradient terms. By Lemma 5, w|W is η-minimal,
with nice singularity at ((spt S) ∩ W, Q∗ ∩ W ). Therefore, there exist positive
numbers δ, γ , a triangulation of (spt S) ∩ W and, for any n-simplex K of the
triangulation, a Lipschitz map φK : Sk−1 → N that satisfy the conditions (i)–(iii)
in Definition 3.2. By taking smaller δ, γ if necessary, we can also assume that the
interior ofU (K , δ, γ ) is contained in W , for any n-simplex K of the triangulation.
Let F := W\ ∪K U (K , δ, γ ), where the union is taken over all n-simplices K of
the triangulation. We estimate separately the energy on F and on eachU (K , δ, γ ).

Let us estimate the energy on F first. Since Q∗ ⊇ (spt S)n−1, the definition (3.1)
of U (K , δ, γ ) implies that

dist(x, Q∗) � dist(x, spt S) for any x ∈ F. (3.30)

(The proportionality constant at the right-hand side depends on δ, γ .) Let us choose
a number p with 1 < p < 1+ 1/k. Since w has a locally nice singularity at (spt S,
Q∗), we obtain

|∇w(x)| � Cw,W

(
dist−1(x, spt S) + dist−p (x, Q∗)

)
(3.30)

� Cw,W dist−p (x, Q∗)

for a.e. x ∈ F and some constant Cw,W that depends on w, W , p, δ and γ . This
implies

1

k

ˆ
F

|∇wε|k � Cw,W

ˆ
F
dist−kp (x, Q∗) dx + Cw,W

εk
L n+k(Zε).

The right-hand side is uniformly bounded with respect to ε, due to [2, Lemma 8.3]
and (3.28), so

lim sup
ε→0

1

k |log ε|
ˆ

F
|∇wε|k = 0. (3.31)

Next, we estimate the energy on U (K , δ, γ ), with K an n-dimensional simplex
in the triangulation of (spt S) ∩ W . We write U := U (K , δ, γ ) for brevity, and
let x = (x ′, x ′′) denote the variable in U , as in (3.1). Using Condition (ii) in
Definition (3.2), we can compute explicitly the gradient of wε, and we obtain

|∇wε(x)| �
(

Cζε(x)

ε
+ 1 − ζε(x)

|x ′′|
) ∣∣∣∣(∇�φK )

(
x ′′

|x ′′|
)∣∣∣∣+ Cζε(x)

ε

� 1 − ζε(x)

|x ′′|
∣∣∣∣(∇�φK )

(
x ′′

|x ′′|
)∣∣∣∣+ Cw,W ζε(x)

ε

for a.e. x ∈ U , where ∇� denotes the tangential gradient on S
k−1. (In the second

inequality, we use that φK is Lipschitz.) We raise to the power k both sides of this
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inequality, integrate over U , apply Fubini theorem and pass to polar coordinates
for the integral with respect to x ′′:

1

k

ˆ
U

|∇wε|k �
(
1

k

ˆ
Sk−1

|∇�φK |k dH k−1
)(ˆ δ

ε

dρ

ρ

)
H n(K )

+ Cw,W L n+k(Zε)

εk

(3.28)

�
(
1

k

ˆ
Sk−1

|∇�φK |k dH k−1
)(

log
δ

ε

)
H n(K ) + Cw,W .

Using Condition (iii) in Definition 3.2, we deduce

lim sup
ε→0

1

k |log ε|
ˆ

U
|∇wε|k � (Emin(σK ) + η)H n(K ), (3.32)

where σK ∈ πk−1(N ) is the homotopy class of φK and Emin(σK ) is defined
by (2.2). We need to distinguish two cases, depending on whether the interior of K
is contained WS or not. If the interior of K is contained in WS, then σK ∈ S
because of (3.25), and (3.32) becomes

lim sup
ε→0

1

k |log ε|
ˆ

U
|∇wε|k � (|σK |∗ + η)H n(K ) � (1 + Cη)M(S K )

(3.33)
for some constantC that depends only onN . (Here again, we have used thatM(S
K ) � H n(K ), due to Proposition (1).) Suppose now that the interior of K is
not contained in WS. The intersection between the interior of K and ∂WS has
dimension n − 1 at most, because we have taken ∂WS to be transverse to spt S.
Therefore, up to refining the triangulation, we may assume that the interior of K
is contained in W\WS. Then, thanks to (3.23) and (3.24), S agrees with S(w∗) in
the interior of K . The chain S(w∗) takes its multiplicity in a finite set that depends
only onN ,X , 
 (by Lemma 3) and hence, Emin(σK ) � C . Thus, (3.32) becomes

lim sup
ε→0

1

k |log ε|
ˆ

U
|∇wε|k � H n(K ) � M(S K ). (3.34)

Combining (3.29), (3.31), (3.33) and (3.34), the inequality (iii) follows. ��

3.4.5. Proof of Theorem C.(ii) and Proposition D.(ii)

Proof of Theorem C.(ii). Let S ∈ C (Ω, v) be a finite-mass chain, and let η > 0
be a small number. Given a countable sequence ε → 0, we aim to construct uε ∈
(L∞ ∩ W 1,k

v )(Ω, Rm), where ε ranges in a non-relabelled subsequence, in such a
way that

lim
ε→0

ˆ
Bm (0, dist(N ,X ))

F(Sy(uε) − S) dy = 0, (3.35)

lim sup
ε→0

Eε(uε)

|log ε| � (1 + Cη)M(S) + Cη, (3.36)
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whereC is a constant that does not depend on η. If we do so, the theoremwill follow,
by a diagonal argument. As we have seen, thanks to Proposition 5, Proposition 6
and a diagonal argument, it is not restrictive to assume that S satisfies (3.23), (3.24),
(3.25). Moreover, we have

S ∂Ω
(3.23),(3.24)= S(w∗) ∂Ω = Sy∗(u∗) ∂Ω = 0 (3.37)

by Lemma 3 and hence, by taking a larger WS if necessary, we can assume without
loss of generality that

M
(
S

(
Ω\WS

))+
ˆ

Ω\WS

|∇u∗|k � η. (3.38)

Step 1. (Definition of uε) To define the recovery sequence near the boundary of Ω ,
we apply Lemma 2 to u∗ and y∗, and consider the map

wε,y∗ := (ξε ◦ ψ) ◦ (u∗ − y∗) · w∗ = (ξε ◦ ψ) ◦ (u∗ − y∗) · (
y∗ ◦ u∗
)

(with ξε, ψ as in Lemma 2). Thanks to Lemma 2 and an averaging argument, by
possibly modifying the value of y∗ we have

Eε(wε,y∗ , Ω\WS) + ε−kL n+k {x ∈ Ω\WS : wε,y∗(x) �= w∗(x)
}

� |log ε|
ˆ

Ω\WS

|∇u∗|k + 1
(3.38)

� η |log ε| + 1.
(3.39)

Our recovery sequence will coincide with wε given by (ii) in W , where WS ⊂
⊂ W ⊂⊂ Ω is the open set introduced in Section 3.4.3. We need to interpolate
betweenwε andwε,y∗ near W . To this end, we take a small parameter θ > 0, andwe
let Dθ := {x ∈ Ω\W : dist(x, W ) < θ}. For x ∈ Dθ , let tθ (x) := θ−1 dist(x, W ).
We define

uε(x) :=

⎧⎪⎨
⎪⎩

wε(x) if x ∈ W

(1 − tθ (x)) wε(x) + tθ (x)wε,y∗(x) if x ∈ Dθ

wε,y∗(x) if x ∈ Ω\ (W ∪ Dθ

)
.

We have uε ∈ (L∞ ∩ W 1,k
v )(Ω, Rm) and supε ‖uε‖L∞(Ω) < +∞.

Step 2. (Bounds on Eε(uε)) The energy of uε on Ω\(W ∪ Dθ ) is bounded from
above by (3.39). The energy of uε is bounded from above by Lemma 7:

lim sup
ε→0

Eε(uε, W )

|log ε| � (1 + Cη)M(S) + C M
(
S (W\WS)

)
(3.38)

� (1 + Cη)M(S) + Cη.

(3.40)

It remains to estimate the energy of uε on Dθ . We first note that |∇tθ | = θ−1 and
hence,

|∇uε| � |∇wε| + ∣∣∇wε,y∗
∣∣+ θ−1

∣∣wε − wε,y∗
∣∣ � |∇wε| + ∣∣∇wε,y∗

∣∣+ Cθ−1.

(3.41)



Giacomo Canevari & Giandomenico Orlandi

ByLemma 5,w = w∗ a.e. inΩ\W and in particular,w = w∗ a.e. in Dθ . Therefore,
for a.e. x ∈ Dθ such that wε(x) = w(x) and wε,y∗(x) = w∗(x), we have uε(x) =
w∗(x) ∈ N . Since the maps uε are uniformly bounded, we deduce that

f (uε) � 1{wε �=w} + 1{wε,y∗ �=w∗}. (3.42)

From (3.41) and (3.42), we obtain

Eε (uε, Dθ ) � Eε (wε, Dθ ) + Eε

(
wε,y∗ , Dθ

)+ θ−kL n+k(Dθ )

+ ε−kL n+k{wε �= w} + ε−kL n+k(Dθ ∩ {wε,y∗ �= w∗}).
The set {wε �= w} is the ε-neighbourhood of spt S, which is a locally polyhedral
set of codimension k, so

L n+k{wε �= w} � εk (3.43)

(see Lemma [2, Lemma 8.3] and (3.28)). Moreover, L n+k(Dθ ) � θ . Then,

Eε (uε, Dθ ) � Eε (wε, Dθ ) + Eε

(
wε,y∗ , Dθ

)
+ ε−kL n+k (Dθ ∩ {wε,y∗ �= w∗

})+ θ1−k + 1.
(3.44)

We choose θ = θ(ε) in such a way that θ(ε) → 0 and θ(ε)1−k |log ε|−1 → 0
as ε → 0; for instance, we take θ(ε) := |log ε|−1/(2k−2). With this choice of θ ,
from (3.44), Lemma 7 and (3.39) we deduce

Eε(uε, Dθ(ε))

|log ε| � Cw,W M
(
S Dθ(ε)

)+ Cη + oε→0(1)

where Cw,W is a constant that depends on w and dist(W, ∂Ω), but not on ε. By
taking the limit as ε → 0, and recalling that ∂W is transverse to spt S, we conclude
that

lim sup
ε→0

Eε

(
uε, Dθ(ε)

)
|log ε| = Cw,W M(S ∂W ) + Cη = Cη. (3.45)

Combining (3.39), (3.40) and (3.45), the inequality (3.36) follows.

Step 3. (uε → w inW 1,k−1(Ω))To complete theproof, it only remains to check (3.35).
As an intermediate step, we prove that uε → w strongly in W 1,k−1(Ω). Up to ex-
traction of a subsequence, we have wε → w in W 1,k−1(W ) and wε,y∗ → w∗ = w

in W 1,k−1(Ω\W ) by Lemma 7 and Lemma 2, respectively. Thus, we only need to
check that ˆ

Dθ(ε)

|∇uε|k−1 → 0 as ε → 0. (3.46)

From (3.41), using that w = w∗ a.e. on Dθ(ε), we deduce

ˆ
Dθ(ε)

|∇uε|k−1 �
ˆ

Dθ(ε)

(
|∇wε|k−1 + ∣∣∇wε,y∗

∣∣k−1 + |wε − w|k−1

θ(ε)k−1 +
∣∣wε,y∗ − w∗

∣∣k−1

θ(ε)k−1

)
.
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The sequences wε and wε,y∗ are strongly compact in W 1,k−1
loc (Ω), W 1,k−1(Ω)

respectively. Since L n+k(Dθ(ε)) → 0, we have
ˆ

Dθ(ε)

(
|∇wε|k−1 + ∣∣∇wε,y∗

∣∣k−1
)

→ 0 as ε → 0.

Then, keeping in mind that wε,y∗ , wε are uniformly bounded, and using (3.39),
(3.43), we obtain

ˆ
Dθ(ε)

|∇uε|k−1 � εk |log ε| θ(ε)1−k + oε→0(1).

Now (3.46) follows, because we have chosen θ(ε) in such a way that θ(ε)1−k |
log ε|−1 → 0.

Step 4. (Proof of (3.35)) Let us take a larger, bounded domainΩ ′ ⊃⊃ Ω and a map
V ∈ (L∞ ∩ W 1,k)(Ω ′\Ω, Rm) with trace v on ∂Ω . We define

ũε :=
{

uε on Ω

V on Ω ′\Ω,
w̃ :=

{
w on Ω

V on Ω ′\Ω.

Since the traces of uε, w agree with that of V on ∂Ω , we have ũε ∈ (L∞ ∩
W 1,k)(Ω ′, Rm), w̃ ∈ (L∞∩W 1,k−1)(Ω ′, Rm), supε ‖ũε‖L∞(Ω ′) < +∞ and ũε →
w̃ strongly in W 1,k−1(Ω ′). By continuity of S [17, Theorem 3.1], this implies

ˆ
Bm(0, dist(N ,X ))

FΩ ′
(
Sy (ũε) − Sy(w̃)

)
dy → 0 as ε → 0.

Since ũε = w̃ a.e. on Ω ′\Ω and the operator S is local [17, Corollary 1], we have
Sy(ũε) (Ω ′\Ω) = Sy(w̃) (Ω ′\Ω) for a.e. y, and hence Sy(ũε) − Sy(w̃) is
supported in Ω for a.e. y. For chains supported in a compact subset of Ω ′, the
relative flat norm FΩ ′ is equivalent to F (see e.g. [17, Remark 2.2]). Therefore, we
have ˆ

Bm(0, dist(N ,X ))
F
(
Sy(ũε) − Sy(w̃)

)
dy → 0 as ε → 0. (3.47)

By [17, Eq. (3.25)] we have Sy(ũε) ∂Ω = 0 and Sy(w̃) ∂Ω = Sy(V ) ∂Ω = 0
for a.e. y, so

Sy(ũε) − Sy(w̃) = (Sy(ũε) − Sy(w̃)
)

Ω.

Since ũε = uε and w̃ = w a.e. on Ω , [17, Corollary 1] implies

Sy(ũε) − Sy(w̃) = (Sy(uε) − S(w)
)

Ω = Sy(uε) − S Ω

and finally, recalling (3.37), we obtain

Sy (ũε) − Sy(w̃) = Sy(uε) − S. (3.48)

From (3.47) and (3.48) we deduce (3.35), and the proof is complete. ��
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The proof of Proposition D.(ii) follows along the same lines, and in fact, is even
simpler.

Proof of Proposition D. Let S be an n-dimensional relative boundary of finite mass
— that is, S has the form S = (∂ R) Ω , where R is an (n +1)-chain of finite mass
such that M(∂ R) < +∞. By a density argument, we can assume without loss of
generality that R is polyhedral. By Proposition 6, we can also assume that ∂ R takes
its multiplicities in the set S ⊆ πk−1(N ) defined by (2.4). Finally, by translating
the support of R and applying Thom’s transversality theorem, we can assume that

(∂ R) ∂Ω = 0. (3.49)

Let w∗ ∈ N be a constant, and let η > 0 be a small parameter. We repeat the
same arguments of Lemma 5 and modify the constant map w∗ in a neighbourhood
of spt R. We obtain a new map w : Rn+k → N that

(i) has a nice singularity at (spt(∂ R), (spt(∂ R))n−1);
(ii) satisfies S(w) = S(w∗) + ∂ R = ∂ R;
(iii) is η-minimal.

Let

uε(x) :=
{
dist(x, spt(∂ R))

ε
, 1

}
w(x) for x ∈ R

n+k .

By the same computations as in Lemma 7, we obtain that wε → w strongly
in W 1,k−1(Rn+k) and that

lim sup
ε→0

Eε (uε, Ω)

|log ε| � (1 + Cη)M
(
(∂ R) Ω ′) , (3.50)

where Ω ′ ⊃⊃ Ω is any open set, with polyhedral boundary, such that ∂Ω is
transverse to spt(∂ R). (The latter condition is generic, by Thom’s transversality
theorem.) The continuity of S [17, Theorem 3.1], together with the fact that the
operator S is local [17, Corollary 1], implies S(uε|Ω) → S(w) Ω = (∂ R) ∂Ω =
S in Y . We let Ω ′ ↘ Ω in (3.50), and we deduce

lim sup
ε→0

Eε(uε, Ω)

|log ε| � (1 + Cη)M((∂ R) Ω)
(3.49)= (1 + Cη)M(S).

Since η may be taken arbitrarily small, Proposition D.(ii) follows, by a diagonal
argument. ��

4. Compactness and Lower Bounds

4.1. A Local Compactness Result

The aim of this section is to prove Statement (i) of Theorem C. As an in-
termediate step, we will prove the following result, which is a local version of
Theorem C.(i). We recall that we have fixed a number δ∗ ∈ (0, dist(N , X )) and
that B∗ := Bm(0, δ∗) ⊆ R

m .
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Proposition 7. Let U ⊂⊂ U ′ be bounded domains inRn+k . Let (uε)ε be a countable
sequence of maps in W 1,k(U ′, Rm) such that

sup
ε>0

Eε(uε, U ′)
|log ε| < +∞. (4.1)

Then, there exist a (non-relabelled) subsequence and a finite-mass chain S ∈
Mn(U

′; πk−1(N )) such that

lim
ε→0

ˆ
B∗

FU
(
Sy (uε) − S

)
dy = 0 (4.2)

M(S U ) � lim inf
ε→0

Eε

(
uε, U ′)

|log ε| (4.3)

(FU is the relative flat norm, see (2.5)).

Throughout this section, we fix bounded domains U ⊂⊂ U ′ ⊆ R
n+k and a

countable sequence (uε) in W 1,k(U ′, Rm) that satisfies (4.1). By an approximation
argument, using the continuity of S (Proposition 3 and [17, Theorem 3.1]), we can
assume without loss of generality that the maps uε are smooth and bounded. For
any ε > 0 and y ∈ B∗, we define the measure

με,y(A) := M(Sy(uε) (A ∩ U ′)) for any Borel set A ⊆ R
n+k . (4.4)

Thanks to (P2) (Proposition 3), με,y is a bounded Radon measure for a.e. y.

4.1.1. Choice of a Grid As in [2], we define a grid G of size h > 0 as a collection
of closed cubes of the form

G = G (a, h) :=
{

a + hz + [0, h]n+k : z ∈ Z
n+k
}
, (4.5)

for some a ∈ R
n+k . For j ∈ N, 0 � j � n + k, we denote by G j the collection of

the (closed) j-cells of G , and we define the j-skeleton of G , R j := ∪K∈G j K . We

let R̃k be the union of all the cells K ∈ Gk that are parallel to the k-plane spanned
by {en+1, . . . , en+k}. Given an open set V ⊆ U ′, we denote by Rk(V ) the union of
the k-cells K ∈ G such that K ∩V �= ∅ (so Rk(V ) ⊇ Rk ∩V ). GivenG = G (a, h),
the grid

G ′ := G (a + (h/2, h/2, . . . , h/2), h)

will be called the dual grid of G . We will denote by G ′
k the collections of k-cells

of G ′ and by R′
k its k-skeleton. For each K ∈ Gk there exists a unique K ′ ∈ G ′

n ,
called the dual cell of K , such that K ∩ K ′ �= ∅.

We are now going to construct a sequence of grids G ε with suitable prop-
erties. The construction is analogous to [2, Lemma 3.11]. Let us take a func-
tion h : (0, 1) → R

+ such that

εα � h(ε) � |log ε|−1 for any α > 0, as ε → 0. (4.6)

For instance, we may take h(ε) := |log ε|−2.
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Lemma 8. For any fixed parameter δ > 0 and any ε < 1 there exists a grid G ε of
size h(ε) that satisfies the following properties:

h(ε)n Eε

(
uε, R̃ε

k ∩ U ′) � (1 + δ)Eε

(
uε, U ′) (4.7)

h(ε)n Eε

(
u, Rε

k ∩ U ′) � δ−1Eε

(
uε, U ′) (4.8)

h(ε)n+1 Eε

(
u, Rε

k−1 ∩ U ′) � δ−1Eε

(
uε, U ′) (4.9)

h(ε)n
ˆ

B∗

ˆ
U ′

dμε,y(x)

distn
(
x, Rε

k−1

) dy � δ−1Eε

(
uε, U ′) . (4.10)

Here με,y is the measure defined by (4.4).

Proof. We take a grid G ε := G (a, h(ε)) of the form (4.5). We claim that it is
possible to choose a ∈ (0, h(ε))n+k in such a way that (4.7)–(4.10) are satisfied.
For (4.7)–(4.9), we can repeat verbatim the arguments in [2]. As for (4.10), let
us call Rε

k−1(a) the (k − 1)-skeleton of the grid G (a, h(ε)). Thanks to (P2) in
Section 2,με,y is a finite, non-negative Radonmeasure for a.e. y ∈ B∗. By applying
[25, Lemma 5.2], together with a scaling argument, we obtain

h(ε)n
 

(0, h(ε))n+k

(ˆ
U ′

dμε,y(x)

distn
(
x, Rε

k−1(a)
)
)
dL n+k(a)

� με,y

(
R

n+k
)

= M
(
Sy (uε) U ′)

for a.e y ∈ B∗. By integrating the previous inequality with respect to y and apply-
ing (P2), we obtain

h(ε)n
 

(0, h(ε))n+k

(ˆ
B∗

ˆ
U ′

dμε,y(x)

distn
(
x, Rε

k−1(a)
) dy

)
dL n+k(a)

� ‖∇uε‖k
Lk (U ′) � Eε

(
uε, U ′) .

Now the lemma follows by an averaging argument, see e.g. [2, Lemma 8.4]. ��
Throughout the rest of this section, we suppose that (4.6) is satisfied, we fix δ ∈

(0, 1) and we consider the sequence of grids G ε given by Lemma 8. Without loss
of generality, we will also assume that

Rε
n+k(U ) ⊂⊂ U ′ (4.11)

(Rε
n+k(U ) is the union of the closed cubes K ∈ G ε such that K ∩ U �= ∅).

Lemma 9. For any α ∈ (0, k/(k2 − k + 2)), there holds

sup
x∈Rε

k−1(U )

dist(uε(x), N ) � C(δ, α) εα

h(ε)(n+k)/2

(
Eε(uε, U ′) + 1

)1/2
,

where C(δ, α) is a positive constant that only depends on N , k, f , n, δ and α.
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Proof. We repeat the arguments of [2, Lemma 3.4]. Let dε := dist(uε, N ), let λ ∈
(0, 1/k) be a parameter, and let G : R+ → R

+ be defined by G(t) := t2λ/(k−kλ)+1.
Thanks to (H3), we have d2

ε � f (uε). Therefore, by (4.9) and (4.11), we obtain

h(ε)n+1
ˆ

Rε
k−1(U )

(
1

k
|∇dε|k + ε−kd2

ε

)
dH k−1 � h(ε)n+1Eε(uε, Rε

k−1(U ))

� δ−1Eε(uε, U ′).
(4.12)

The Young inequality and the chain rule imply that

δ−1Eε(uε, U ′) � h(ε)n+1
ˆ

Rε
k−1(U )

(
1

k
|∇dε|k + ε−kd2

ε

)
dH k−1

� C(λ) ε−kλh(ε)n+1
ˆ

Rε
k−1(U )

|∇dε|k−kλ d2λ
ε dH k−1

� C(λ) ε−kλh(ε)n+1
ˆ

Rε
k−1(U )

|∇(G ◦ dε)|k−kλ dH k−1

(4.13)

Since we have assumed that λ < 1/k, we have k − kλ > k − 1 and hence, for
any (k − 1)-cell K ⊆ Rε

k−1(U ), we can bound the oscillation of G ◦ dε on K by
Sobolev embedding:

(osc (G ◦ dε, K ))k−kλ � C(δ, λ) h(ε)1−kλ

ˆ
Rε

k−1(U )

|∇(G ◦ dε)|k−kλ dH k−1

(4.13)

� C(δ, λ) εkλh(ε)−n−kλEε

(
uε, U ′) .

The inverse G−1 of G is well-defined and Hölder continuous of exponent (k −
kλ)/(2λ + k − kλ), so

osc (dε, K ) � C(δ, λ)
(
εkλh(ε)−n−kλEε(uε, U ′)

)1/(2λ+k−kλ)

� C(δ, λ) εkλ/(2λ+k−kλ) h(ε)−(n+kλ)/(2λ+k−kλ) Eε(uε, U ′)1/(2λ+k−kλ)

(4.14)
On the other hand, we can bound the integral average of dε on K thanks to (4.12):

 
K

dε dH
k−1 �

( 
K

d2
ε dH

k−1
)1/2

� δ−1/2 εk/2 h(ε)−(n+k)/2 Eε(uε, U ′)1/2.
(4.15)

Combining (4.14) with (4.15), and letting λ ↗ 1/k, the lemma follows. ��

4.1.2. A Polyhedral Approximation of Sy(uε) Let y ∈ B∗ be fixed in such a
way that Sy(uε) has finite mass for any ε. (Thanks to (P2), the set of y such that
this property is not satisfied is negligible, because the sequence (uε) is assumed
to be countable.) We are going to construct a polyhedral approximation of Sy(uε),
supported on the dual n-skeleton (Rε)′n of the grid.
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Thanks to Lemma 9, there exists ε0 > 0 (depending on δ∗, but not on y) such
that

dist (uε(x), N ) < dist(N , X ) − δ∗ < dist(N , X ) − |y| (4.16)

for any x ∈ Rε
k−1(U ) and any ε ∈ (0, ε0]. As a consequence, the projection 
(uε −

y) is well-defined and smooth on Rε
k−1(U ) for ε ∈ (0, ε0]. For any K ∈ G ε

k , let
γ ε(K ) ∈ πk−1(N ) be the homotopy class of 
(uε−y) on ∂K . The quantity γ ε(K )

does not depend on the choice of y ∈ B∗, because 
(uε − y)|∂K and 
(uε)|∂K

are homotopic to each other, due to (4.16); a homotopy is defined by (x, t) ∈
∂K × [0, 1] �→ 
(uε(x) − t y). We define the polyhedral chain

T ε :=
∑

K∈G ε
k , K∩U �=∅

γ ε(K ) �K ′� ∈ Mn

(
U ′; πk−1(N )

)
, (4.17)

where K ′ ∈ (G ε)′n is the dual cell to K . The chain T ε depends on the choice of the
grid, but not on y.

Lemma 10. For any ε ∈ (0, ε0] and any y ∈ B∗ such that Sy(uε) has finite mass,
there holds

FU
(
Sy(uε) U − T ε

)
� h(ε)n+1

ˆ
U ′

dμε,y(x)

distn
(
x, Rε

k−1

) . (4.18)

Moreover, ∂T ε U = 0.

Proof. Essentially, this lemma is a particular instance of the Deformation Theorem
for flat chains [26, Theorem 7.3] (see also [2, Lemma 3.8] for a statement which is
specifically tailored for application toGinzburg–Landau functionals).Nevertheless,
we provide details for the convenience of the reader.

Let ε ∈ (0, ε0] be fixed. By [2, Lemma 3.8.(i)] there exists a locally Lipschitz
retraction ζ ε : Rn+k\Rε

k−1 → (Rε)′n , which maps each cube of G ε into itself and
satisfies

|∇ζ ε(x)| � h(ε) dist(x, Rε
k−1)

−1 for a.e. x ∈ R
n+k\Rε

k−1. (4.19)

By (4.16), we have uε(x) − y /∈ X for any x ∈ Rε
k−1(U ). By construction

(see [17, Section 3]), this implies spt(Sy(uε)) ∩ Rε
k−1(U ) = ∅, so the push-for-

ward ζ ε∗ (Sy(uε)) U is well-defined. Let τ ε : [0, 1] × (Rn+k\Rε
k−1) → R

n+k be
given by

τ ε(t, x) := (1 − t)x + tζ ε(x)

and let I be the 1-chain, with integer multiplicity, carried by the interval [0, 1]with
positive orientation. We remark that

τ ε∗ (I × ∂Sy(uε)) U = 0. (4.20)
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Indeed, since ζ ε maps each cell K of G ε into itself, we have (τ ε)−1(U ) ⊆ [0, 1]×
Rε

n+k(U ) ⊂⊂ [0, 1] × U ′ by (4.11). This implies

τ ε∗ (I × ∂Sy(uε)) U = τ ε∗
(
(I × ∂Sy(uε)) ([0, 1] × Rε

n+k(U ))
)

U

= τ ε∗
(
I × (∂Sy(uε) Rε

n+k(U )
))

U = 0

because ∂Sy(uε) U ′ = 0 [17, Theorem3.1]. This proves (4.20). As a consequence,
by applying the homotopy formula (see e.g. [26, Eq. (6.3) p. 172]), we deduce that

(
ζ ε∗ (Sy(uε)) − Sy(uε)

)
U = ∂τ ε∗ (I × Sy(uε)) U. (4.21)

From [26, Eq. (6.5) p. 172]
and (4.19), we obtain

M
(
τ ε∗ (I × Sy(uε))

)
� h(ε)n

ˆ
U ′

|ζ ε(x) − x |
distn(x, Rε

k−1)
dμε,y(x)

� h(ε)n+1
ˆ

U ′

dμε,y(x)

distn(x, Rε
k−1)

.

Then, by the properties of the relative flat norm (see e.g. [17, Lemma 2]) and (4.21),
we deduce

FU (ζ ε∗ (Sy(uε)) − Sy(uε)) � h(ε)n+1
ˆ

U ′

dμε,y(x)

distn(x, Rε
k−1)

. (4.22)

To conclude the proof of (4.18), it suffices to show that ζ ε∗ (Sy(uε)) agrees with T ε

inside U . By [26, Lemma 7.2], ζ ε∗ (Sy(uε)) U is a n-polyhedral chain of the
grid (G ε)′; in particular, itsmultiplicity is constant on every n-cell of (G ε)′.Wewant
to compute suchmultiplicities. Let us take K ∈ G ε

k and its dual cell K ′ ∈ (G ε)′n , and
let x be the unique element of K ∩K ′. By construction of ζ ε (see [2, Lemma 3.8 and
Figure 3.2]), we have (ζ ε)−1(x) = K\∂K . By Thom’s parametric transversality
theorem, we can assume with no loss of generality that K intersects transversally
the support of Sy(uε). Then, by definition of push-forward, we have

multiplicity of ζ ε∗ (Sy(uε)) at x = I(Sy(uε), �(ζ ε)−1(x)�)

= I(Sy(uε), �K �)
(P0)= γ ε(K )

and hence (
ζ ε∗ (Sy(uε)) − T ε

)
U = 0. (4.23)

Now, (4.18) follows from (4.22) and (4.23). Moreover, (4.23) implies

∂T ε U = ζ ε∗ (∂Sy(uε)) U = 0,

because Sy(uε) has no boundary inside U ′ [17, Theorem 3.1, (S3)]. ��
To bound the mass of T ε, we will use the following result.
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Lemma 11. There exist positive numbers δ1 = δ1(N , f ), C0 = C0(N , f ) and,
for r > 0, εr = εr (r, N , f ), Cr = Cr (r, N , f ) such that the following statement
holds. Let Qk

h := [−h/2, h/2]k be a cube of edge length h > 0. Suppose that u ∈
W 1,k(Qk

h, Rm) satisfies

u|∂ Qk
h

∈ W 1,k
(
∂ Qk

h, Rm
)

and dist(u(x), N ) � δ1 for a.e. x ∈ ∂Ω.

Let γ ∈ πk−1(N ) be the homotopy class of u on ∂ Qk
h. Let 0 < ε < hk/2/2 be

such that

ε

hk/2

∣∣∣log ε

hk/2

∣∣∣ |γ |∗ � εr .

Then,

Eε (u, Qh) + C0 h r Eε (u, ∂ Qh) � |γ |∗
∣∣∣log ε

hk/2

∣∣∣− Cr |γ |∗
(
1 + log |γ |∗

)
.

The proof of Lemma 11 will be given in Appendix C.

Lemma 12. For any r, δ and for sufficiently small ε, there holds

(
1 − cr,δ(ε)

)
M
(
T ε U

)
� δ−1 (1 + r)

Eε

(
uε, U ′)

|log ε| , (4.24)

where cr,δ(ε) > 0 is such that cr,δ(ε) → 0 as ε → 0. Moreover, if L is the k-plane
spanned by {en+1, . . . , en+k}, then there holds

(
1 − cr,δ(ε)

)
M(πL ,∗(T ε U )) �

(
1 + δ + Cr δ−1

) Eε(uε, U ′)
|log ε| . (4.25)

Proof. We first remark that

M
(
T ε U

)
� h(ε)n

∑
K∈G ε

k , K∩U �=∅
|γ ε(K )|∗. (4.26)

Let K ∈ G ε
k be a k-cell such that K ∩ U �= ∅. We claim that

|γ ε(K )|∗ � δ−1 h(ε)−n Eε

(
uε, U ′) (4.27)

Indeed, thanks to (P0) and the definition of I (see e.g. [17, Section 2.1]), we have

|γ ε(K )|∗ = |I (Sy (uε) , �K �
) |∗ � M

(
Sy
(
uε |K

))
for any y ∈ B∗. By averaging both sides with respect to y ∈ B∗, and by apply-
ing (P2) from Proposition 3, we obtain

|γ ε(K )|∗ �
 

B∗
M
(
Sy
(
uε |K

))
dy � ‖∇uε‖k

Lk (K )
� Eε

(
uε, Rε

k ∩ U ′) .
Wecanbound the right-hand side fromabovewith thehelpof (4.8), so the claim (4.27)
follows.
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From (4.1), (4.6) and (4.27), we deduce

sup
K∈G ε

k , K∩U �=∅
ε

h(ε)k/2

∣∣∣∣log
(

ε

h(ε)k/2

)∣∣∣∣ |γ ε(K )|∗ → 0 as ε → 0

and this fact, together with (4.16), shows that the assumptions of Lemma 11 are
satisfied for ε small enough. By applying Lemma 11, (4.6) and (4.27), we obtain
the following bound:

|γ ε(K )|∗ |log ε| (1 + oε→0(1)) � Eε(uε, K ) + Cr h(ε)Eε (uε, ∂K ) .

We multiply both sides by h(ε)n |log ε|−1 and sum over K . Thanks to (4.26), we
obtain

(1 + oε→0(1))M(T ε U ) � h(ε)n Eε(uε, Rε
k ∩ U ′)

|log ε|
+ Cr h(ε)n+1 Eε

(
uε, Rε

k−1 ∩ U ′)
|log ε| .

The right-hand side can now be bounded from above with the help of Lemma 8,
so (4.24) follows. The proof of (4.25) is analougous; in this case, we sum over the
cells K that are parallel to the k-plane spanned by {en+1, . . . , en+k} and use (4.7).
��

4.1.3. Proof of Proposition 7 By combining the results in the previous section,
we prove the following lemma, which is analougous to [2, Proposition 3.1]. For
any n-plane L ⊆ R

n+k , we denote by πL : Rn+k → L the orthogonal projection
onto L .

Lemma 13. Let U ⊂⊂ U ′ be bounded domains in R
n+k . Let (uε)ε be a count-

able sequence of smooth, bounded maps that satisfy (4.1). Let L ⊆ R
n+k be a

n-plane. Then, there exist a (non-relabelled) subsequence and a finite-mass chain
S ∈ Mn(U

′; πk−1(N )) such that
ˆ

B∗
FU (Sy(uε) − S) dy → 0 as ε → 0 (4.28)

M
(
πL ,∗(S U )

)
� lim inf

ε→0

Eε

(
uε, U ′)

|log ε| . (4.29)

Proof. Up to rotations we can assume without loss of generality that L is the k-
plane spanned by {en+1, . . . , en+k}. By Lemma 10 and Lemma 12, we know that
∂T ε U = 0 and M(T ε U ) is uniformly bounded with respect to ε. Then, by
applying compactness results for the flat norm (see e.g. [17, Lemmas 5 and 6] for a
statement in terms of the relative flat norm), we find a (non-relabelled) subsequence
and a finite-mass chain S ∈ Mn(U ; πk−1(N )) such that

FU (T ε − S) → 0 as ε → 0 (4.30)
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M
(
πL ,∗(S U )

)
�
(
1 + δ + Cδ−1r

)
lim inf

ε→0

Eε

(
uε, U ′)

|log ε| . (4.31)

The triangle inequality and Lemma 10 implyˆ
B∗

FU
(
Sy(uε) − S

)
dy

�
ˆ

B∗
FU
(
Sy(uε) − T ε

)
dy + L n (B∗)

FU
(
T ε − S

)

� h(ε)n+1
ˆ

B∗

ˆ
U ′

dμε,y(x)

distn
(
x, Rε

k−1

)dy + L n(B∗)FU (T ε − S)

(4.10)

� δ−1h(ε)
Eε

(
uε, U ′)

|log ε| + L n (B∗)
FU (T ε − S)

and the right-hand side tends to zero as ε → 0, due to (4.1) and (4.30). Thus,
(4.28) follows. By passing to the limit in (4.31) first as r → 0, then as δ → 0, we
obtain (4.29). ��

Now, Proposition 7 can be deduced from Lemma 13 by a localisation argument,
with the help of the following lemma.

Lemma 14. Let S ∈ Mn(Rn+k; πk−1(N )) be a chain of finite mass. Then, there
holds

M(S) = sup
(Ui , Li )i∈N

+∞∑
i=0

M
(
πLi ,∗ (S Ui )

)
,

where the supremum is taken over all sequences of pairwise disjoint open sets Ui

and n-planes Li ⊆ R
n+k .

The proof will be given in Appendix D.2. Once Lemma 14 is proved, Proposi-
tion 7 follows by repeating verbatim the arguments of [2, Theorem 1.1.(i)], so we
skip the proof of Proposition 7.

4.2. Compactness and Lower Bounds for the Boundary Value Problem

The aim of this section is to complete the proof of Theorem C.(i). We will
deduce Theorem C.(i) from its local counterpart, i.e. Proposition 7, with the help
of the extension result, Lemma 2.

Proof of Theorem C.(i). Let (uε)ε ⊆ W 1,k
v (Ω, Rm) be such that supε

|log ε|−1Eε(uε) < +∞. Let ũ ∈ (L∞ ∩ W 1,k)(Rn+k, Rm) be such that ũ = v

on ∂Ω . Let Ω ′, Ω ′′ be bounded domains in R
n+k , such that Ω ⊂⊂ Ω ′ ⊂⊂ Ω ′′.

By applying Lemma 2, we find y ∈ B∗, a subsequence ε → 0 and maps wε,y ∈
(L∞ ∩ W 1,k)(Ω ′′\Ω, Rm) that agree with v on ∂Ω and satisfy

sup
ε

(
‖wε,y‖L∞(Ω ′′\Ω) + Eε

(
wε,y, Ω ′′\Ω)

|log ε|

)
< +∞. (4.32)
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Lemma 2 also implies that the sequence (wε,y) converges W 1,k−1(Ω ′′\Ω)-strongly
to a limit wy , and that S(wy) = Sy(ũ). Then, the continuity of S [17, Theorem 3.1]
implies ˆ

B∗
FΩ ′′\Ω

(
Sy′(wε,y) − Sy(ũ)

)
dy′ → 0 as ε → 0. (4.33)

We define themap ũε ∈ (L∞∩W 1,k)(Ω ′′, Rm) by setting ũε := uε onΩ and ũε :=
wε,y on Ω ′′\Ω . Since the operator S is local [17, Corollary 1], we have

Sy′
(
wε,y

) (
Ω ′′\Ω) = Sy′ (ũε)

(
Ω ′′\Ω)

for a.e. y′ ∈ B∗. Therefore, from (4.33) and [17, Lemma 3] we obtain
ˆ

B∗
FΩ ′\Ω

(
Sy′(ũε) − Sy(ũ)

)
dy′ → 0 as ε → 0. (4.34)

We are now in the position to apply our local result, Proposition 7, to the sequence ũε

and the open sets Ω ′ ⊂⊂ Ω ′′. As a result, we obtain a finite-mass chain S̃ such
that, up to subsequences,

ˆ
B∗

FΩ ′
(
Sy′ (ũε) − S̃

)
dy′ → 0 as ε → 0. (4.35)

By [17, Lemma 3],
ˆ

B∗
FΩ ′\Ω

(
Sy′ (ũε) − S̃

)
dy′ → 0 as ε → 0.

This condition, combined with (4.34), implies that Sy(ũ) (Ω ′\Ω) = S̃ (Ω ′\Ω)

and hence, the chain

S := S̃ − Sy(ũ)
(
Ω ′\Ω) = S̃ Ω

is supported inΩ . At the same time,we haveSy′(uε) = Sy′(ũε) Ω for a.e. y′ ∈ B∗.
For chains supported in a compact subset of Ω ′, the relative flat norm FΩ ′ is
equivalent to F (see e.g. [17, Remark 2.2]) and hence, (4.35) implies

ˆ
B∗

F
(
Sy′(uε) − S

)
dy′ → 0 as ε → 0.

By (P3), Sy′(uε) ∈ C (Ω, v) for any ε and a.e. y′ ∈ B∗. The set C (Ω, v) is closed
with respect to the F-norm (this follows from the isoperimetric inequality, see e.g.
[26, Statement (7.6)]). Therefore, S ∈ C (Ω, v).

It only remain to prove the upper bound on the mass of S. Let A ⊆ R
n+k

be an open set. We extract a (non-relabelled) subsequence, in such a way that
lim infε→0 |log ε|−1 Eε(uε, A ∩ Ω) is achieved as a limit. For any integer j � 1,
let A j := {x ∈ A : dist(x, ∂ A) � 1/j}. By applying Proposition 7 and a diagonal
argument, we find a subsequence such that

M
(
S

(
A j ∩ Ω ′)) � lim sup

ε→0

Eε

(
ũε, A ∩ Ω ′′)
|log ε| for any j � 1.
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By construction, S is supported inΩ , so S (A j ∩Ω ′) = S A j . Then, by applying
Lemma 2, we obtain

M
(
S A j

)
� lim

ε→0

Eε (uε, A ∩ Ω)

|log ε| + C
ˆ

Ω ′′\Ω
|∇ũ|k for any j � 1,

for some constantC that does not depend on ε, j ,Ω ′′. Letting j → +∞,Ω ′′ ↘ Ω ,
we conclude that

M(S A) � lim
ε→0

Eε (uε, A ∩ Ω)

|log ε|
and the proof is complete. ��

Statement (i) in Proposition D also follows by Proposition 7, in a similar way.

5. Proof of Theorem A

Let uε,min be a minimiser of the functional Eε subject to the boundary condi-
tion u = v on ∂Ω , and let

με,min :=
(
1

k
|∇uε,min|k + 1

εk
f (uε,min)

)
dx Ω

|log ε| .

We have supε με,min(R
n+k) < +∞ by Remark 9 and hence, up to a subsequence,

με,min converges weakly∗ to a limit μmin, in the sense of measures on R
n+k . By

applying Theorem C.(i), we find a chain Smin ∈ C (Ω, v) such that

M (Smin A) � lim inf
ε→0

με,min(A) for any open set A ⊆ R
n+k . (5.1)

Theorem C.(ii) implies that Smin is mass-minimising inC (Ω, v). Moreover, by the
properties of weak∗ convergence, from (5.1) we obtain

M (Smin A) � μmin(A) for any open set A ⊆ R
n+k such that μmin(∂ A) = 0.

(5.2)
Let E ⊆ R

n+k be a Borel set, let U ⊆ R
n+k be an open set and let K ⊆ R

n+k be a
compact set such that K ⊆ E ⊆ U . For any t ∈ (0, dist(K , ∂U )), let Ut := {x ∈
U : dist(x, ∂U ) > t} ⊇ K . Sinceμmin is a finite measure, we haveμmin(∂Ut ) = 0
for all but countably many t ∈ (0, dist(K , ∂U )). Therefore, there holds

M (Smin K ) � M (Smin Ut )
(5.2)

� μmin(Ut ) � μmin(U ) for a.e. t.

Letting U ↘ K , K ↗ E , we conclude that M(Smin E) � μmin(E). (The
measure M(Smin ·) is Radon, because by construction, it is the weak∗ limit of a
sequence of Radon measures, associated with polyhedral approximations of Smin;
see [26, Section4].)As a consequence,μmin−M(Smin ·) is a non-negativemeasure.
However, Theorem C.(ii) implies that μmin(R

n+k) = limε→0 με,min(R
n+k) �

M(Smin), so μmin = M(Smin ·).
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A. The Norm on πk−1(N ): Proof of Proposition 1

The aim of this section is to prove Proposition 1. In Section 2, we have defined

Emin(σ ) := inf

{
1

k

ˆ
Sk−1

|∇�v|k : v ∈ W 1,k(Sk−1, N ) ∩ σ

}
(A.1)

for anyσ ∈ πk−1(N ),with∇� the tangential gradient onSk−1 (i.e. the restrictionof∇ to the
tangent plane to S

k−1). The compact Sobolev embedding W 1,k

(Sk−1, N ) ↪→ C(Sk−1, N ) implies that W 1,k(Sk−1, N ) ∩ σ is sequentially W 1,k -
weakly closed, so the infimum at the right-hand side is achieved. We must have

inf
σ∈πk−1(N )\{0}

Emin(σ ) > 0, (A.2)

for otherwise therewould exist a sequenceof non-null-homotopicmapsv j ∈ W 1,k(Sk−1, N )

that converge W 1,k -strongly, and hence uniformly, to a constant. Moreover, there holds

Emin(σ ) = Emin(−σ) for any σ ∈ πk−1(N ). (A.3)

Indeed, for anyv ∈ W 1,k(Sk−1, N )∩σ andany x ∈ S
k−1, define v̄(x) := v(−x1, x2, . . . , xk).

The map that sends v �→ v̄ is a bijection W 1,k(Sk−1, N )∩σ → W 1,k(Sk−1, N )∩ (−σ)

that preserves the Lk -norm of the gradient, and hence (A.3) follows.
Our candidate norm | · |∗ on πk−1(N ), which was also introduced in Section 2, is defined
for any σ ∈ πk−1(N ) by

|σ |∗ := inf

⎧⎨
⎩

q∑
i=1

Emin(σi ) : q ∈ N, (σi )
q
i=1 ∈ πk−1(N )q ,

q∑
i=1

σi = σ

⎫⎬
⎭. (A.4)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition 8. The function | · |∗ is a norm on πk−1(N ) that satisfies

inf
σ∈πk−1(N )\{0}

|σ |∗ > 0 (A.5)

and
|σ |∗ � Emin(σ ) for any σ ∈ πk−1(N ). (A.6)

The infimum in Equation (A.4) is achieved, for any σ ∈ πk−1(N ). Moreover, the set

S := {σ ∈ πk−1(N ) : |σ |∗ = Emin(σ )
}

(A.7)

is finite, and for any σ ∈ πk−1(N ) there exists a decomposition σ = ∑q
i=1 σi such that

|σ |∗ =∑q
i=1 |σi |∗ and σi ∈ S for any i .

Proof. The function | · |∗ is certainly non-negative, and its definition (A.4) immediately
implies the triangle inequality, |σ1 + σ2|∗ � |σ1|∗ + |σ2|∗. The property |σ |∗ = | − σ |∗
follows by (A.3), while (A.2) yields (A.5) (in particular, |σ |∗ = 0 only if σ = 0). The
property (A.6) is immediate from the definition of | · |∗.
We check now that the set S is finite. Under the assumption (H2), Hurewicz theorem (see
e.g. [31, Theorem 4.37 p. 371]) implies that πk−1(N ) is isomorphic to the homology group
Hk−1(N ). The latter is Abelian and finitely generated, because the manifoldN is compact
and hence, homotopically equivalent to a finite cell complex. Therefore, we have

πk−1(N ) 	 Hk−1(N ) 	 Z
p ⊕ T,

where p � 0 is an integer and T is a finite group. Let (gi )
p
i=1 be a basis for the torsion-free

part of Hk−1(N ) (i.e., the quotient Hk−1(N )/T 	 Z
p). By de Rham theorem, there exist

closed, smooth (k − 1)-forms ω1, . . . , ωp that satisfy

ˆ
ci

ω j = δi j for any i, j,

where ci is a smooth (k −1)-cycle in the homology class gi . Let σ ∈ πk−1(N ). By abusing
of notation, and identifying gi with its image under the Hurewicz isomorphism, we can write
uniquely

σ =
p∑

i=1

di gi + σT ,

where di ∈ Z and σT ∈ T . Then, for any v ∈ W 1,k(Sk−1, N ) ∩ σ , we have

|di | =
∣∣∣∣
ˆ
Sk−1

v∗ωi

∣∣∣∣ � ‖ωi ‖L∞(N ,Λk−1T ∗N )

ˆ
Sk−1

|∇�v|k−1

g � Ck,N

(
1

k

ˆ
Sk−1

|∇�v|k
) k−1

k

where Ck,N > 0 is a constant depending only on k and the ωi ’s. This implies

Emin(σ ) � C ′
k,N

⎛
⎝ p∑

i=1

|di |
⎞
⎠

k
k−1

(A.8)
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for a different constant C ′
k,N . On the other hand, the definition of | · |∗ immediately gives

the upper bound

|σ |∗ �
(

max
i=1,...,p

Emin(gi )

) p∑
i=1

|di | + max
σT ∈T

Emin(σT ). (A.9)

Ifσ ∈ S then, by comparing (A.8) and (A.9),we obtain
∑

i |di | � M for some constant M >
0 depending only on k,N . Therefore, S is a finite set.
For any σ ∈ πk−1(N ) there exists a finite decomposition σ = ∑q

i=1 σi which achieves
the infimum in the right-hand side of (A.4). Indeed, it suffices to minimise among the de-
compositions with q � (infg∈πk−1(N )\{0} Emin(g))−1Emin(σ ) and Emin(σi ) � Emin(σ )

for any i , and there are only finitely many such decompositions because of (A.2), (A.8).
Let σ =∑q

i=1 σi be a decomposition that achieves the minimum in (A.4). Then, the trian-
gle inequality implies

q∑
i=1

Emin(σi ) = |σ |∗ �
q∑

i=1

|σi |∗

and, since |σi |∗ � Emin(σi ) for any i , we must have |σi |∗ = Emin(σi ), i.e. σi ∈ S, for
any i . ��
Example A.1. Let k = 2, N = S

1. Then, πk−1(N ) 	 Z and Emin(d) = πd2 for any d ∈
Z, since the infimum in (A.1) is achieved by a curve that parametrises the unit circle |d| times,
with constant speed and orientation depending on the sign of d . Therefore,S = {−1, 0, 1}
and |d|∗ = π |d| for any d ∈ Z.
More generally, whenN = S

k−1 the constant that appears in the lower bound (A.8) can be
computed explicitely, and we have

Emin(d) � βk |d| k
k−1 for any d ∈ πk−1(S

k−1) 	 Z, (A.10)

where βk := (k − 1)k/2L k(Bk
1 ). On the other hand, by using the identity as a comparison

map for (A.1), we see that Emin(1) � (k − 1)k/2vol(Sk−1)/k = βk , hence Emin(1) =
Emin(−1) = βk . It follows that

Emin(d)
(A.10)

> βk |d| � |d|∗ if |d| > 1.

Therefore, also in caseN = S
k−1 we haveS = {−1, 0, 1}. By Proposition 1, we conclude

that |d|∗ = βk |d| for any d ∈ πk−1(S
k−1) 	 Z.

B. The Operator S: Proof of Proposition 3

The aim of this section is to prove Proposition 3, which we recall here for the convenience
of the reader. We recall that δ∗ ∈ (0, dist(N , X )) is a fixed constant, B∗ := Bm(0, δ∗) ⊆
R

m , and Y := L1(B∗, Fn(Ω; πk−1(N ))) is equipped with the norm

‖S‖Y :=
ˆ

B∗
F(Sy) dy < +∞.

Proposition 9. There exists a continuous operator S : W 1,k(Ω, R∗) → Y that satisfies the
following properties:
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(P0) for any smooth u, a.e. y ∈ B∗ and any R ∈ Fk(Rn+k; Z) such that M(R) +
M(∂ R) < +∞, spt(R) ⊆ Ω , spt(∂ R) ⊆ Ω\ spt Sy(u), there holds

I
(
Sy(u), R

) = homotopy class of 
 ◦ (u − y) on ∂ R.

(P1) For any u ∈ (L∞ ∩ W 1,k)(Ω, Rm) and a.e y ∈ B∗, Sy(u) = Sy(u) (more
precisely, the chainSy(u) belongs to the equivalence classSy(u) ∈ Fn(Ω; πk−1(N ))).
(P2) For any u ∈ W 1,k(Ω, Rm) and any Borel subset E ⊆ Ω , there holds

ˆ
B∗

M
(
Sy(u) E

)
dy �

ˆ
E

|∇u|k .

(P3) Let u0, u1 ∈ W 1,k(Ω, Rm) be such that u0|∂Ω = u1|∂Ω ∈ W 1−1/k,k

(∂Ω, N ) (in the sense of traces). Then, for a.e. y0, y1 ∈ B∗ there exists R ∈
Mn+1(Ω; πk−1(N )) such that Sy1(u1) − Sy0 (u0) = ∂ R.

In the proof, we will use the following

Lemma 15. Let ρ > 0, and let Γρ := {x ∈ R
n+k\Ω : dist(x, Ω) < ρ}. Then, for any

finite-mass chain T ∈ Mn(Rn+k; πk−1(N )), there holds

F
(
T Ω

)
�
(
1 + ρ−1

)
F(T ) + M

(
T Γρ

)
.

Proof. For any t > 0, let Ωt := {x ∈ R
n+k : dist(x, Ω) < t}. There holds

ˆ ρ

0
F (T Ωt ) dt � (1 + ρ)F(T )

(see e.g. [17, Lemma 4, Eq. (2.8)]). By an averaging argument, we can find t ∈ (0, ρ) such
that

F (T Ωt ) �
(
1 + ρ−1

)
F(T ). (B.1)

Now, there holds T Ωt = T Ω + T Γt and hence,

F
(
T Ω

)
� F (T Ωt ) + F (T Γt )

(B.1)

�
(
1 + ρ−1

)
F(T ) + M (T Γt ) ,

so the lemma follows. ��
Proof of Proposition 9. For the sake of clarity, we split the proof into steps.

Step 1. (Construction of S) First, we consider a smooth map u ∈ C∞
c (Rn+k , Rm) and the

topological singular operator, Sy(u), as defined in [17, Section 3.2, Eq. (3.4)]. By definition,
we can write

Sy(u) =
∑
K

γ (K )�(u − y)−1(K )� for a.e. y ∈ B∗. (B.2)

Here, the sum is taken over all (m − k)-dimensional polyhedra K in X . The coeffi-
cient γ (K ) ∈ πk−1(N ) is the homotopy class of 
 restricted to a small (k − 1)-sphere Σ

around K , 
|Σ : Σ 	 S
k−1 → N . For a.e. y ∈ B∗, the set (u − y)−1(K ) is a smooth,

compact n-dimensional manifold (as a consequence of Thom’s transversality theorem,
see e.g. [32, Theorem 2.7 p. 79]) and �(u − y)−1(K )� denotes the smooth chain carried
by (u − y)−1(K ), with unit multiplicity and a suitable orientation (see [17, Section 3.2] for
more details).
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We claim that, for any u, u0, u1 ∈ C∞
c (Rn+k , Rm) and any open set U ⊆ R

n+k , there
holds ˆ

B∗
M
(
Sy(u) U

)
�
ˆ

U
|∇u|k (B.3)

ˆ
B∗

F
(
Sy (u1) − Sy (u0)

)

� ‖u1 − u0‖Lk
(
Rn+k

)
(

‖∇u0‖k−1
Lk
(
Rn+k

) + ‖∇u1‖k−1
Lk
(
Rn+k

)
)

. (B.4)

These inequalities differ from the corresponding ones in [17, Theorem3.1] because themulti-
plicative constants in front of the right-hand sides do not depend on the L∞-normof u, u0, u1.
We postpone the proof of (B.3)–(B.4). As a consequence of (B.4), by a density argument we
can extend S to a continuous operator W 1,k(Rn+k , Rm) → L1(B∗, F(Rn+k , πk−1(N ))),
still denoted S for simplicity. The property (B.3) is preserved for any u ∈ W 1,k(Rn+k , Rm),
by the lower semi-continuity of M (see e.g. [17, Lemma 3 and Lemma 5]).
Since the domainΩ ⊆ R

n+k is bounded and smooth, by reflection about ∂Ω andmultiplica-
tion with a cut-off function we can define a linear extension operator T : W 1,k(Ω, Rm) →
W 1,k(Rn+k , Rm), such that

‖T u‖Lk (Rn+k ) � ‖u‖Lk (Ω) , ‖∇(T u)‖Lk (Rn+k) � ‖∇u‖Lk (Ω) + ‖u‖Lk (Ω). (B.5)

For any u ∈ W 1,k(Ω, Rm) and a.e. y ∈ B∗, the chain Sy(T u) has finite mass, due to (B.3).
Therefore, the restriction

Sy(u) := Sy(T u) Ω

is well-defined and belongs to Mn(Ω; πk−1(N )).

Step 2. (S is continuous) Let (u j ) j∈N be a sequence in W 1,k(Ω, Rm) such that u → u

in W 1,k(Ω). From (B.4) and (B.5), we deduce
ˆ

B∗
F(Sy(T u j ) − Sy(T u)) dy

�
∥∥u j − u

∥∥
Lk (Ω)

(∥∥∇u j
∥∥k−1

Lk (Ω)
+ ‖∇u‖k−1

Lk (Ω)

)
+ ∥∥u j − u

∥∥k
Lk (Ω)

(B.6)

Let ρ > 0 and Γρ := {x ∈ R
n+k\Ω : dist(x, Ω) < ρ}. By applying Lemma 15 and (B.3),

(B.6), we obtain

‖S (u j
)− S (u) ‖Y �

(
1 + ρ−1

)ˆ
B∗

F
(
Sy
(
T u j

)− Sy (T u)
)
dy

+
ˆ

B∗
M
(
Sy
(
T u j

)
Γρ

)
dy +

ˆ
B∗

M
(
Sy (T u) Γρ

)
dy

�
(
1 + ρ−1

) ∥∥u j − u
∥∥

Lk (Ω)

(∥∥∇u j
∥∥k−1

Lk (Ω)
+ ‖∇u‖k−1

Lk (Ω)

)

+
(
1 + ρ−1

) ∥∥u j − u
∥∥k

Lk (Ω)
+ ∥∥∇ (T u j

)∥∥k
Lk(Γρ)

+ ‖∇ (T u)‖k
Lk(Γρ)

.

By taking the limit in the inequality above first as j → +∞, then as ρ → 0, we conclude
that S(u j ) → S(u) in Y .



Giacomo Canevari & Giandomenico Orlandi

Step 3. (Proof of (P1)) By construction, Sy(u) = Sy(u) for any u ∈ C∞
c (Rn+k , Rm) and

a.e. y ∈ B∗. By continuity of both S and S [17, Theorem 3.1], we deduce that S = S
on (L∞ ∩ W 1,k)(Ω, Rm).

Step 4. (Proof of (P2)) Let E ⊆ Ω be a Borel set and U ⊇ E be open. By (B.3), we have
ˆ

B∗
M
(
Sy(u) E

)
dy �

ˆ
B∗

M
(
Sy(u) U

)
dy �

ˆ
U

|∇u|k

and (P2) follows by letting U ↘ E .

Step 5. (Proof of (P3)) Take u0, u1 ∈ W 1,k(Ω, Rm). For i ∈ {0, 1} and M > 0, we define

ui,M :=
⎧⎨
⎩

ui if |ui | � M
Mui

|ui | otherwise.

Since ui,M → ui strongly in W 1,k(Ω) as M → 0, the continuity of S gives, upon extraction
of a (non-relabelled) subsequence,

F
(
Sy
(
ui,M

)− Sy (ui )
)→ 0 as M → +∞, for a.e. y ∈ B∗ and i ∈ {0, 1}. (B.7)

Let B := {∂ R : R ∈ Mn+1(Ω; Rn+k)}. By [17, Proposition 2], we have Sy0 (u1,M ) −
Sy1(u0,M ) ∈ B for any M > 0 and a.e. y0, y1 ∈ B∗. On the other hand, the set B is closed
with respect to the F-norm, as a consequence of the isoperimetric inequality (see e.g. [25,
7.6]). Therefore, (P3) follows by (B.7).

Step 6. (Proof of (B.3)) Let u ∈ C∞
c (Rn+k , Rm) and let E ⊆ R

n+k be a Borel set. SinceX
contains finitely many (m − k)-cells K , there exists a constant C such that |γ (K )|∗ � C for
any K . Then, using the definition (B.2) of Sy(u), we deduce

M
(
Sy(u) E

)
�
∑
K

H n
(
(u − y)−1(K ) ∩ E

)
, (B.8)

where the sum is taken over all the (m − k)-dimensional polyhedra K in X . We fix K
and assume, without loss of generality, that K ⊆ {y ∈ R

m : y1 = . . . = yk = 0
} 	 R

m−k .
Let ζ⊥ be the orthogonal projection R

m → {
y ∈ R

m : ym−k+1 = . . . = ym = 0
} 	 R

k .
Then,

(u − y)−1(K ) ⊆
(
ζ⊥ ◦ u

)−1 (
ζ⊥(y)

)

If we integrate this inequality over y ∈ B∗, and use the variable y = (z, z⊥) ∈ R
m−k ×R

m ,
we obtainˆ

B∗
H n

(
(u − y)−1(K ) ∩ E

)

�
ˆ
[−δ∗, δ∗]m−k×[−δ∗, δ∗]k

H n
((

ζ⊥ ◦ u
)−1

(z⊥) ∩ E

)
d
(

z, z⊥)

�
(
2δ∗)m−k

ˆ
Rk

H n
(
(ζ⊥ ◦ u)−1

(
z⊥) ∩ E

)
dz⊥.

The right-hand side can be estimated by applying the coarea formula:
ˆ

B∗
H n

(
(u − y)−1(K ) ∩ E

)
�
ˆ

E

∣∣∣∇ (ζ⊥ ◦ u
)∣∣∣k �

ˆ
E

|∇u|k . (B.9)

Combining (B.8) and (B.9), (P2) follows.
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Step 7. (Proof of (B.4)) Let u0, u1 ∈ C∞
c (Rn+k , Rm), and let u : [0, 1] × R

n+k → R
m

be defined by u(t, x) := (1 − t)u0(x) + tu1(x). Let π : [0, 1] × R
n+k → R

n+k be the
canonical projection, π(t, x) := x . By [17, Proposition 4], we have

Sy(u1) − Sy(u0) = ∂
(
π∗Sy(u)

)
.

Therefore, using (B.2), we obtain

F(Sy(u1) − Sy(u0)) � M(π∗Sy(u)) �
∑
K

M

(
π∗�(u − y)−1(K )�

)
, (B.10)

where the sum is taken over all the (m − k)-polyhedra K in X . Fix such a K . As above,
we assume that that K ⊆ {

y ∈ R
m : y1 = . . . = yk = 0

}
. Let ζ , ζ⊥ be the orthogonal

projections of Rm onto {y ∈ R
m : y1 = . . . = ym−k = 0} 	 R

m−k , {y ∈ R
m : ym−k+1 =

. . . = ym = 0} 	 R
k , respectively. We wite z := ζ(y), z⊥ := ζ⊥(y) and identify y =

(z, z⊥). Then, for a suitable choice of orientation of K , we obtain

�(u − y)−1(K )� = �
(
ζ⊥ ◦ u

)−1
(z⊥)�

(
(ζ ◦ u − z)−1 (K )

)
. (B.11)

where �(ζ⊥◦u)−1(z⊥)� is the chain carried by the set (ζ⊥◦u)−1(z⊥), with unit multiplicity,
oriented by the Jacobian of ζ⊥ ◦ u (see e.g. [17, p. 72]). Let us define v := ζ⊥ ◦ u,
Kz := (ζ ◦ u − z)−1(K ). By integrating (B.11) with respect to y ∈ B∗, we obtainˆ

B∗
M

(
π∗�(u − y)−1(K )�

)
dy

�
ˆ
[−δ∗,δ∗]m−k×Rk

M

(
π∗
(
v−1(z⊥) Kz

))
d
(

z, z⊥) .

We may write v(t, x) = (1 − t)v0(x) + tv1(x), where v0 := ζ⊥ ◦ u0, v1 := ζ⊥ ◦ u1. By
applying [17, Lemma 15], we deduceˆ

B∗
M

(
π∗�(u − y)−1(K )�

)
dy

� (2δ∗)m−k
ˆ
Rn+k

|v0 − v1|
(
|∇v0|k−1 + |∇v1|k−1

)
.

(B.12)

Combining (B.10) and (B.12), using that the function ζ is 1-Lipschitz, and applying the
Hölder inequality, (B.4) follows. ��

C. Energy Lower Bounds When n = 0

The aimof this section is to prove energy lower bounds in the critical dimension, i.e.whenn =
0. In the contest of the Ginzburg–Landau theory, i.e. when N = S

k−1, energy bounds of
this type were proved by Jerrard [38] and, in case k = 2, by Sandier [50].
Let δ0 > 0, r > 0 be small numbers. Suppose that a map u ∈ W 1,k(Ω, Rm) satisfies

dist(u(x), N ) � δ0 for a.e. x ∈ Ω such that dist(x, ∂Ω) < r. (C.1)

Then,we can define the homotopy class of u (or,more precisely, of
◦u) on ∂Ω as an element
of πk−1(N ). This is immediate in case u is continuous on ∂Ω and Ω is homeomorphic to a
disk. IfΩ has not the topology of a disk, this is still possible due to theHurewicz isomorphism
πk−1(N ) 	 Hk−1(N ), which holds true thanks to (H2) (see e.g. [31, Theorem 4.37
p. 371] and (C.10) below). If u is not continuous we can define its homotopy class by
approximating 
 ◦ u with smooth functions Ω → N , as in [14] (see also (C.10) below for
more details).
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Proposition 10. Let Ω ⊆ R
k be a bounded, Lipschitz domain and let r > 0. There exist a

number δ0 > 0, depending only on N , and positive constants ε0, M, depending only on Ω ,
r , N , k and f , such that the following statement holds. Suppose that u ∈ W 1,k(Ω, Rm)
satisfies (C.1), and let σ ∈ πk−1(N ) be the homotopy class of u on ∂Ω . Let ε ∈ (0, 1/2)
be such that ε |log ε| |σ |∗ � ε0. Then,

Eε(u) � |σ |∗ |log ε| − M |σ |∗ (1 + log |σ |∗).

The aim of this section is to prove Proposition 10. Once Proposition 10 is proved, Propo-
sition B follows by an extension argument in a neighbourhood of ∂Ω (see e.g. [10, Theo-
rem 2]). Lemma 11 also follows from Proposition 10, by exactly the same arguments as in
[2, Lemma 3.10].

C.1. Reduction to the Cone-Valued Case

For the purposes of this section, it will be convenient to consider the nearest-point projection
onto N . If z ∈ R

m is sufficiently close to N , there exists a unique π(z) ∈ N such that
|z − π(z)| � |z − w| for any w ∈ N . Moreover, the map z �→ π(z) is a smooth in a
neighbourhood of N . Throughout the rest of the section, we fix a small parameter θ0 and
assume that π is well-defined and smooth in a θ0-neighbourhood of N .

Lemma 16. If u : Ω → R
m is a smooth map that satisfies dist(u(x), N ) < θ0 for any x ∈

Ω and if d := dist(u, N ), then there holds

|∇u|2 � C1 |∇d|2 + (1 − C2d) |∇ (π ◦ u)|2 on Ω,

where C1, C2 are positive constants that only depend on N .

Proof. Let x0 ∈ Ω be arbitrarily fixed. Let ν1, . . . , νp be a smooth orthonormal frame for
the normal space toN , locally defined in a neighbourhood of (π ◦ u)(x0). Then, for each x
in a neighbourhood of x0 there exist numbers α1(x), . . . , αp(x) such that

u(x) = (π ◦ u)(x) +
p∑

i=1

αi (x) (νi ◦ π ◦ u)(x).

The functions αi are as regular as u. By differentiating this equation, raising both sides to
the square, using the fact that ∂ j (π ◦ u) is tangent toN and ν · ∂ j ν = 0, we obtain

|∇u|2 − |∇(π ◦ u)|2

=
p∑

i=1

(
|∇αi |2 + α2

i |∇ (νi ◦ π ◦ u)|2 + 2αi ∇(π ◦ u) : ∇ (νi ◦ π ◦ u)
)
.

SinceN is smooth and compact, we have |∇νi | � C for some constant C that only depends
on N and not on u. Therefore, setting d := dist(u, N ) = (

∑
i α2

i )1/2, we obtain

|∇u|2 − |∇(π ◦ u)|2 �
p∑

i=1

|∇αi |2 − Cd |∇(π ◦ u)|2 . (C.2)

On the other hand, by differentiating the identity d = (
∑

i α2
i )1/2, we see that

|∇d|2 �

⎛
⎝ p∑

i=1

|∇αi |
⎞
⎠
2

�
p∑

i=1

|∇αi |2 . (C.3)

By combining (C.2) and (C.3), the lemma follows. ��
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Lemma 17. Suppose that f : Rm → R satisfies the assumptions (H1)–(H3). Then, there
exist positive constants α, β and a smooth function φ : Rm → [0, 1] such that the following
holds:

(i) φ(y) = 1 for any y ∈ N ;
(ii) φ(y) = 0 if dist(y, N ) � θ0, and in particular π(y) is well-defined for any y ∈ R

m

such that φ(y) > 0;
(iii) for any u ∈ W 1,k(Ω, Rm), there holds

1

k
|∇u|k + 1

εk
f (u) � α |∇(φ ◦ u)|k + 1

k
(φ ◦ u)k |∇(π ◦ u)|k + β

εk
(1 − φ ◦ u)2

pointwise a.e. on Ω .

Proof. Let u ∈ W 1,k(Ω, Rm) be given. By a density argument, we can assume without loss
of generality that u is smooth. Let d := dist(u, N ), and let x0 ∈ Ω be such that d(x0) < θ0.
By applying Lemma 16, and using the convexity of the function t �→ tk/2, we see that the
inequality

|∇u|k � C1 |∇d|k + (1 − C2d) |∇(π ◦ u)|k (C.4)
holds pointwise in a neighbourhood of x0 (thoughwemay need to re-define the constantsC1,
C2.) Let ξ ∈ C∞

c [0, +∞) be a non-increasing function, such that ξ = 1 in a neighbourhood
of 0 and ξ(min{θ0/2, 1/(2C2)}) = 0. We set

φ(y) := (1 − C2 dist(y, N ))1/k ξ(dist(y, N ))

for any y ∈ R
m . This defines a smooth function φ : Rm → [0, 1] which satisfies (i) and (ii).

Since (φ ◦ u)k � 1 − C2d and |∇(φ ◦ u)| � |∇d|, from (C.4) we deduce that

1

k
|∇u|k � α |∇(φ ◦ u)|k + 1

k
(φ ◦ u)k |∇(π ◦ u)|k (C.5)

pointwise in the open set {d < θ0}. Here α is a positive constant that only depends on N ,
k and ξ . Because the function φ ◦ u is identically equal to zero on the open set {d > θ0/2},
the inequality (C.5) actually holds in the whole of Ω .
We consider now the potential term f (u). Due to the assumption (H3), f (u) � d2 and
hence, there exists a positive number β > 0 such that

f (u) � β
(
1 − (φ ◦ u)k

)2
in Ω. (C.6)

By combining (C.5) and (C.6), and using the elementary inequality 1− xk � 1− x for 0 �
x � 1, the lemma follows. ��

C.2. Proof of Proposition 10

Throughout this section, we fix a bounded, smooth map u : Ω → R
m and we let s := φ ◦ u,

v := π ◦u, where φ is the function given by Lemma 17 and π is the nearest-point projection
onto N . Thanks to Lemma 17, in order to provide lower bounds for Eε(u) it suffices to
bound from below the functional

Gε(s, v) = Gε(s, v; Ω) :=
ˆ
Ω

(
α |∇s|k + sk

k
|∇v|k + β

εk
(1 − s)2

)
. (C.7)

To this end, we adapt Jerrard’s approach in [38]. We explain here the main steps of the
construction and point out the differences, referring the reader to [38] for more details.
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Let us fix a small number η0, such that

0 < η0 < dist(N , X ) − θ0. (C.8)

Let V ⊆ Ω be an open set such that s > 0 on ∂V . By Lemma 17, we have dist(u(x), N ) <
θ0 for any x ∈ ∂V . Therefore, by (C.8), we have spt(Sy(u))∩ ∂V = ∅ for a.e. y ∈ R

m such
that |y| � η0. In fact, Sy(u) is a 0-chain of finite mass, and hence we can write

Sy(u) V :=
q∑

i=1

σi �xi � (C.9)

where σi ∈ πk−1(N ) and xi ∈ V . The quantity I(Sy(u), �V �) := ∑q
i=1 σi ∈ πk−1(N )

plays the rôle of the topological degree and indeed, it coincides with the homotopy class
ofπ◦u on ∂V because of Proposition 9.(P0) and (C.8) (see [17, Section 2.4 andTheorem3.1]
for the details on the case u is not smooth). In particular, I(Sy(u), �V �) is independent of
the choice of y.
As in [38], we define an “approximate homotopy class”, which allows us to disregard sets
where s is small but u does not carry topological obstruction. We let S := {x ∈ Ω : s(x) �
1/2}. The components S̃ of S are closed sets and it is possible to define I(Sy(u), �S̃�) as
above. We define the “essential part” of S:

SE := ∪
{

S̃ component of S : I(Sy(u), �S̃�) �= 0
}
.

For V ⊆ Ω , we define the “approximate homotopy class” of u on ∂V as

hc(u, ∂V ) :=
∑

S̃

I(Sy(u), �S̃�) ∈ πk−1(N ), (C.10)

where the sum is taken over all the components S̃ of SE such that S̃ ⊂⊂ V . If V ⊆ Ω is an
open disk and s > 1/2 on ∂V , then hc(u, ∂V ) is the homotopy class of v : ∂V 	 S

k−1 →
N .
For any ρ > 0, we define

λε(ρ) := min
0�μ�1

{
μk

ρ
+ C0

ε
(1 − μ)N

}

and

Λε(ρ) :=
ˆ ρ

0
min

{
λε(s),

C1

ε

}
dρ,

where C0 > 0, C1 > 0 and N > 1 are parameters that we will need to choose, depending
on k, α and β. It can be shown (see [38, Theorem 2.1, proof of (2.2)]) that

λε(ρ) � 1

ρ

(
1 − C

εν

ρν

)
,

where C > 0 only depends on k, C0 and ν := 1/(N − 1) > 0. As a consequence, λε(ρ) �
C1/ε if ρ � C2ε, for some constant C2 > 0 depending on k, C0, C1 and N . Therefore, after
integration we obtain that

Λε(ρ) � log
ρ

ε
− C (C.11)

for any ρ � 0, where the constantC only depends on k,α, β.We have the following analogue
of [38, Proposition 3.2].
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Lemma 18. Let ε � ρ1 � ρ2 and let u ∈ W 1,k(Bk
ρ2

\Bk
ρ1

, Rm) be smooth. Suppose that

hc(u, ∂ Bk
ρ) = σ for any ρ ∈ (ρ1, ρ2). Then, there holds

Eε(u, Bk
ρ2

\Bk
ρ1

) � |σ |∗
(

Λε

(
ρ2

|σ |∗

)
− Λε

(
ρ1

|σ |∗

))
.

Proof. First of all, given ρ > 0 and a map v ∈ W 1,k(∂ Bk
ρ, N ) in the homotopy class σ ∈

πk−1(N ), there holds
1

k

ˆ
∂ Bk

ρ

|∇v|k � Emin(σ )

ρ
(C.12)

where Emin(σ ) is defined by (A.1). This inequality follows immediately from the definition
of Emin(σ ), combined with a scaling argument.
Now, for any ρ � ε > 0 and any smooth u : ∂ Bk

ρ → R
m such thatμ := min∂ Bk

ρ
φ◦u > 1/2,

it holds that

Gε(s, v; ∂ Bk
ρ) � Emin(σ )

ρ
μk + C0

ε
(1 − μ)N .

Here Gε is defined by (C.7), s := φ ◦ u, v := π ◦ u, and σ denotes the homotopy class of v

on ∂ Bk
ρ . The constants C0, N are suitably chosen at this stage. The proof of this claim follow

by repeating, almost word by word, the arguments in [38, Theorem 2.1]; the only difference
is that we need to apply (C.12) instead of [38, Lemma 2.4]. Due to (A.6), we obtain

Gε(s, v; ∂ Bk
ρ) � μk

ρ/ |σ |∗
+ C0

ε
(1 − μ)N � λε

(
ρ

|σ |∗

)
. (C.13)

On the other hand, in case 0 � μ � 1/2, [38, Lemma 2.3] implies that

Gε(s, v; ∂ Bk
ρ) � C1

ε
(C.14)

for some C1 > 0 that depends on k, C0 and N . Therefore, by integrating the inequali-
ties (C.13)–(C.14) with respect to ρ, we deduce that

Gε(s, v; Bk
ρ2

\Bk
ρ1

) �
ˆ ρ2

ρ1

min

(
λε

(
ρ

|σ |∗
)

,
C1

ε

)

dρ = |σ |∗
ˆ ρ2/|σ |∗
ρ1/|σ |∗

min

(
λε(s),

C1

ε

)
ds

and, thanks to Lemma 17, the lemma follows. ��
We also have an analogue of [38, Proposition 3.3].

Lemma 19. Suppose that u ∈ W 1,k(Ω, Rm) is smooth and that SE ⊂⊂ Ω . Then, there
exists a finite collection of closed, pairwise disjoint balls (Bi )

p
i=1, of radii ρi � ε, such that

SE ⊆ ∪p
i=1Bi , Bi ∩ SE �= ∅ for any i , and

Eε(u; Bρi ∩ Ω) � C1

ε
ρi .

Proof. We claim that, if S̃ is a connected component of SE such that S̃ ⊂⊂ Ω , then
ˆ

S̃
|∇u|k �

∣∣∣hc(u, ∂ S̃)

∣∣∣∗. (C.15)
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This inequality parallels [38, Lemma 3.2]; once (C.15) is established, the rest of the proof
follows exactly as in [38]. The definition (C.10) of hc and (C.9) imply that

∣∣∣hc (u, ∂ S̃
)∣∣∣∗ =

∣∣∣I(Sy(u), �S̃�)
∣∣∣∗ � M

(
Sy(u) S̃

)
(C.16)

for a.e. y ∈ R
m such that |y| � η0. On the other hand, (P2) gives that

ˆ
Rm

M

(
Sy(u) S̃

)
dy �

ˆ
S̃

|∇u|k ,

so there exists (a set of positive measure of) y such that |y| � η0 and M(Sy(u) S̃) �´
S̃ |∇u|k . Then, (C.15) follows from (C.16). ��

Lemma 19 and the definition of Λε imply that

Eε(u; Bi ) � |hc(u, ∂ Bi )|∗ Λε

(
ρi

|hc(u, ∂ Bi )|∗

)
for any i. (C.17)

The last step in the proof of Proposition 10 is the so-called “ball construction” [38, Proposi-
tion 4.1]. If u satisfies (C.1) for some r > 0 then, by choosing δ0 = δ0(N ) < θ0 sufficiently
small, we obtain as a consequence

|s(x)| � 1

2
for any x ∈ Ω such that dist(x, ∂Ω) < r. (C.18)

Moreover, we can assume without loss of generality that u satisfies

Eε(u) � |hc(u, ∂Ω)|∗ |log ε| + C (C.19)

for some ε-independent constant C , for otherwise Proposition 10 holds trivially.

Lemma 20. There exists a constant ε0 > 0 such that the following statement holds. Let u ∈
W 1,k(Ω, Rm) be a smooth function that satisfies (C.18) for some r > 0 and (C.19). For
any τ > 0 and any ε ∈ (0, 1/2) such that

4τ |hc(u, ∂Ω)|∗ < r, ε |log ε| |hc(u, ∂Ω)|∗ � ε0, (C.20)

there exists a finite collection of closed ball (B̃i )
q
i=1, of radii ri , that satisfy the following

properties:

(i) the interiors of the balls are pairwise disjoint;
(ii) SE ⊂⊂ ∪q

i=1 B̃i and B̃i ∩ SE �= ∅ for any i;

(iii) letting s := mini ri /| hc(u, ∂ B̃i )|∗, we have

Eε(u, B̃i ∩ Ω) � ri

s
Λε(s);

(iv) τ/2 � s � τ ;

(v) |hc(u, ∂Ω)|∗ =∑q
i=1 | hc(u, ∂ B̃i )|∗.

Lemma 20 follows by repeating the arguments of [38, Proposition 4.1] (see also [2, Remark
at p. 22]), and using Lemmas 18, 19 and (C.17).
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Proof of Proposition 10. We assume that u is smooth, satisfies (C.18) (as a consequence of
our assumption (C.1)) and (C.19). We apply Lemma 20 and use the fact that, by definition
of s, | hc(u, ∂ B̃i )|∗ � ri /s for any i :

Eε(u, Ω)
(i)−(i i i)

�
p∑

i=i

ri

s
Λε(s)�

p∑
i=i

∣∣∣hc(u, ∂ B̃i )
∣∣∣∗ Λε(s)

(v)= |hc(u, ∂Ω)|∗ Λε(s)

(iv)

� |hc(u, ∂Ω)|∗ Λε

( τ

2

) (C.11)

� |hc(u, ∂Ω)|∗ log τ

2ε
− C.

The constant C here only depends on k, α, β. Now, we choose τ := r/(8| hc(u,
∂Ω)|∗) (which is admissible in view of (C.20)). Taking (A.5) into account, we obtain the
desired estimate in case u is smooth. Now the proposition follows by a density argument.
��

D. Technical Results about Flat Chains

Throughout this appendix,weconsider chainswith coefficients in anormedAbeliangroup (G, |·
|) such that

inf
g∈G\{0} |g| > 0. (D.1)

This assumption is satisfied by (πk−1(N ), | · |∗), due to Proposition 1.

D.1. Approximation Results for Flat Chains

We give the proof of the approximation results, Proposition 5 and 6 , we have used in
Section 3.4.2. For convenience, we recall the statements here. Let S ⊆ G be a set of
generators for G. We assume that, for any g ∈ G, there exist g1, . . . , gp ∈ S such that

g =
p∑

i=1

gi and |g| =
p∑

i=1

|gi | . (D.2)

The set defined by (A.7) satisfies this assumption, by Proposition 1.

Proposition 11. Let S ∈ Mn(Rn+k; G) be a polyhedral chain. Let WS ⊆ R
n+k be an

open set, with polyhedral boundary, such that ∂WS is transverse to spt S (i.e., there exist
triangulations of ∂WS and spt S such that any simplex of the triangulation of ∂WS is
transverse to any simplex of the triangulation of spt S). Then, there exists a sequence of
polyhedral (n + 1)-chains R j , supported in WS, such that the following hold:

(i) S + ∂ R j → S, with respect to the F-norm, as j → +∞;
(ii) M(S + ∂ R j ) → M(S) as j → +∞;

(iii) for any j , (S + ∂ R j ) ∂WS = 0;
(iv) for any j , the chain (S + ∂ R j ) WS takes multiplicities in the set S ⊆ πk−1(N )

defined by (2.4).

Proposition 11 implies Proposition 6.

Proof. Since ∂WS is transverse to spt S, the intersection spt S ∩ ∂WS has dimension n − 1
at most and hence, S ∂WS = 0. By triangulating S, we can write S WS as a finite sum

S WS =
∑
K

σK �K �,
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Fig. 7. The chain R j , in case n = 1, k = 2 and S consists of a segment only, S = σK �K �.
The chain S is in black, R j is in gray, and S + ∂ R j is in red

where σK ∈ πk−1(N ) and the K ’s are closed n-simplices, whose interiors are contained
in WS and pairwise disjoint. We fix positive parameters δ, γ and, for any n-simplex K
of S WS, we consider the set U (K , δ, γ ) defined by (3.1). We choose δ, γ small enough,
so that the interiors of the U (K , δ, γ )’s are pairwise disjoint and contained in WS. By
assumption (D.2), we can write σK =∑p

i=1 σK ,i where σK ,i ∈ S and

|σK | =
p∑

i=1

∣∣σK ,i
∣∣ . (D.3)

Take distinct vectors yK ,1, . . . , yK ,p ∈ R
n+k that are orthogonal to K and satisfy |yK ,1| =

. . . = |yK ,p| = 1. For each i ∈ {1, . . . , p}, we define hK ,i : [0, 1] × K → R
n+k by

hK ,i (t, x ′) := x ′ + t min
{
δ, γ dist

(
x ′, ∂K

)}
yK ,i

for any
(
t, x ′) ∈ [0, 1] × K .

For any integer j � 1, we define

R j :=
∑
K

p∑
i=1

σK ,i hK ,i∗ (�[0, 1/j]� × �K �)

(see Figure 7).
The chain R j is polyhedral, because the hK ,i ’s are piecewise affine, and supported in WS.
The support of R j may intersect ∂WS only along its (n−1)-skeleton, so (∂ R j ) ∂WS = 0.

We compute the mass of R j . Since the maps hK ,i are Lipschitz, and their Lipschitz constant
only depends on γ , which is fixed, the area formula implies

M
(
R j
)

�
∑
K

p∑
i=1

∣∣σK ,i
∣∣∗ H n+1 ([0, 1/j] × K )

(D.3)≤ j−1
M (S WS) → 0

as j → +∞.
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Thus, (i) follows. Now, we compute the boundary of R j . For each simplex K and each i , we

have hK ,i (t, x ′) = x ′ if x ′ ∈ ∂K and hK ,i (0, x ′) = x ′ for any x ′ ∈ K . As a consequence,

∂hK ,i∗
(
�[0, 1/j]� × �K �

)
= hK ,i∗

(
�1/j� × �K � − �0� × �K �

)− hK ,i∗
(
�[0, 1/j]� × ∂�K �

)
= hK ,i ( j−1, ·)∗�K � − �K �.

By multiplying this identity by σK ,i , and taking the sum over i , K , we obtain

∂ R j =
∑
K

p∑
i=1

σK ,i hK ,i
(

j−1, ·
)
∗ �K � − S WS. (D.4)

In particular, S WS + ∂ R j = (S + ∂ R j ) WS takes multiplicities in S. Finally, by
applying the area formula to (D.4), we deduce

M(S WS + ∂ R j ) →
∑
K

p∑
i=1

∣∣σK ,i
∣∣∗ H n(K )

(D.3)= M(S WS)

as j → +∞,

and (ii) follows. ��
LetΩ ⊆ R

n+k be a domain and let S ∈ Mn(Ω; G). Recall that S is called locally polyhedral
if, for any compact set K ⊆ Ω , there exists a polyhedral chain T such that (S − T ) K = 0.
We write S0 ∼

Ω
S1 if there exists R ∈ Mn+1(Ω; G) such that S1 = S0 + ∂ R.

Proposition 12. Let Ω ⊆ R
n+k be a bounded, Lipschitz domain. Let S0 ∈ Mn(Ω; G) be

a locally polyhedral chain such that S0 ∂Ω = 0. Let S ∈ Mn(Ω; G) be such that S ∼
Ω

S0. Then, there exists a sequence of polyhedral (n + 1)-chains R j , with compact support
in Ω , such that S0 + ∂ R j → S (with respect to the F-norm) and M(S0 + ∂ R j ) → M(S)
as j → +∞.

Proposition 5 follows from Proposition 12, with the help of (P3) and Lemma 3. We split the
proof of Proposition 12 into several lemmas. The first one is a straightforward consequence
of the deformation theorem for flat chains; we provide a proof for completeness.

Lemma 21. Let q ∈ {0, . . . , n + k − 1}, T ∈ Mq (Rn+k; G) anq η > 0 be given. Suppose
that T is compactly supported and ∂T is polyhedral. Then, there exist a polyhedral q-chain P
and a finite-mass chain C ∈ Mq+1(R

n+k; G), supported in the η-neighbourhood of spt T ,
that satisfy

T = P + ∂C,

M(P) � M(T ) + ηM(∂T ), M(C) � ηM(T ).

Proof. We apply the deformation theorem (see e.g. [26, Theorem 7.3] or [54, Theorem 1.1])
to T . We find a polyhedral q-chain A, a finite-mass q-chain B and a finite-mass (q + 1)-
chain C that satisfy the following properties:

(a) T = A + B + ∂C ;
(b) M(A) � M(T ) + ηM(∂T ),M(B) � ηM(∂T ) and M(C) � ηM(T );
(c) A, B, C are supported in the η-neighbourhood of spt T .

Since we have assumed that ∂T is polyhedral, we can take B to be polyhedral, too (see e.g.
[54, Theorem 1.1.(7)]). Then, the chains P := A + B and C have all the required properties.
��
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Lemma 22. Let Ω ⊆ R
n+k be a bounded, Lipschitz domain. Let S0 ∈ Mn(Ω; G) be such

that S0 ∂Ω = 0. Let R ∈ Mn+1(Ω; G) be such that M(∂ R) < +∞. Then, there exists a
sequence of chains R j ∈ Mn+1(Ω; G), compactly supported in Ω , such that ∂ R j → ∂ R
(with respect to the F-norm) and M(S0 + ∂ R j ) → M(S0 + ∂ R) as j → +∞.

The proof of Lemma 22 is identical to that of [2, Proposition 8.6]. In [2], the authors work
in the setting of currents; however, the arguments used in the proof of Proposition 8.6 carry
over to the setting of flat chains, thanks to the results in [26, Sections 5 and 6].

Lemma 23. Let Ω ⊆ R
n+k be a bounded, Lipschitz domain. Let S0 ∈ Mn(Ω; G) be a

locally polyhedral chain such that S0 ∂Ω = 0, and let S ∈ Mn(Ω; G) be such that S ∼
Ω

S0. Then, there exists a sequence of locally polyhedral chains S j ∈ Mn(Ω; G) with the
following properties:

(i) F(S j − S) → 0 as j → +∞;
(ii) M(S j ) → M(S) as j → +∞;

(iii) for any j , we can write S j = S0 + ∂ R j for some finite-mass (n + 1)-chain R j with
compact support in Ω .

Proof. By assumption, there exists R ∈ Mn(Ω; G) such that S = S0 + ∂ R. Thanks to
Lemma 22 and a diagonal argument, we can assume without loss of generality that R is
compactly supported in Ω . For any positive t , let Ωt := {x ∈ Ω : dist(x, ∂Ω) > t}.
We take a positive number t0 such that spt R ⊆ Ω2t0 , and an open set U , with polyhedral
boundary, such that Ω2t0 ⊂⊂ U ⊂⊂ Ωt0 . Because S and S0 differ by a boundary, we have

∂(S U ) + ∂
(

S
(
R

n+k\U
))

= ∂S = ∂S0 = ∂ (S0 U ) + ∂
(

S0
(
R

n+k\U
))

.

However, S and S0 agree out ofU , so ∂(S U ) = ∂(S0 U ). In particular, since S0 is locally
polyhedral in Ω and U is polyhedral, ∂(S U ) is a polyhedral chain. Thanks to, e.g., [26,
Theorem 5.6 and 7.7], there exists a sequence of polyhedral n-chains Tj that F-converges
to S U , satisfies spt Tj ⊆ Ωt0 for any j and

∂Tj = ∂(S U ) for any j ∈ N, M
(
Tj
)→ M(S U ) as j → +∞. (D.5)

By definition of the F-norm, there exist sequences Pj ∈ Mn+1(R
n+k; G) and Q j ∈

Mn(Rn+k; G) such that

S U − Tj = ∂ Pj + Q j for any j (D.6)

M
(
Pj
)→ 0, M(Q j ) → 0 as j → +∞. (D.7)

We do not know a priori whether the chains Pj , Q j are supported in Ω , so we perform a
truncation argument. Define

Pj,t := (∂ Pj
)

Ωt − ∂
(
Pj Ωt

)
for t ∈ (0, t0) and j ∈ N. By applying Fatou’s lemma and [26, Theorem 5.7], we obtain
that

ˆ t0

0
lim inf
j→+∞M(Pj,t ) dt � lim inf

j→+∞

ˆ t0

0
M(Pj,t ) dt � lim inf

j→+∞M(Pj )
(D.7)= 0.
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Therefore, for a.e. t ∈ (0, t0) there exists a (non-relabelled) subsequence j → +∞ such
that M(Pj,t ) → 0. By taking the restriction of (D.6) to Ωt , we obtain

S U − Tj = ∂

⎛
⎜⎜⎜⎝ Pj Ωt︸ ︷︷ ︸

=:P ′
j

⎞
⎟⎟⎟⎠+ Pj,t + Qt Ωt︸ ︷︷ ︸

=:Q′
j

. (D.8)

By construction, P ′
j and Q′

j are supported in Ωt ⊆ Ω , and there holds

M(P ′
j ) → 0, M(Q′

j ) → 0 as j → +∞. (D.9)

Moreover, by taking the boundary of both sides of (D.8), we deduce that

∂ Q′
j = ∂(S U ) − ∂Tj

(D.5)= 0.

By applying Lemma 21 to Q′
j , we find a decomposition

Q′
j = Q′′

j + ∂C j , (D.10)

where
(a) Q′′

j is a polyhedral n-chain such that M(Q′′
j ) � M(Q′

j );

(b) C j is a (n + 1)-chain of finite mass and M(C j ) � j−1
M(Q′

j );

(c) Q′′
j and C j are supported in Ωt0−1/j .

From (a), (b) and (D.9), we deduce that

M
(
C j
)→ 0, M

(
Q′′

j

)
→ 0 as j → +∞. (D.11)

Now, we define

S j := Tj + Q′′
j + S

(
R

n+k\U
)

. (D.12)

By construction, S j is locally polyhedral. We have

S j − S = Tj + Q′′
j − S U

(D.8)= Q′′
j − ∂ P ′

j − Q′
j

(D.10)= −∂
(

P ′
j + C j

)
(D.13)

and hence, F(S j − S) → 0 due to (D.9) and (D.11). By the lower semi-continuity of the
mass, we deduce that M(S) � lim inf j→+∞ M(S j ). On the other hand, if we apply the

triangle inequality to (D.12) and use the identityM(S) = M(S U ) +M(S (Rn+k\U )),
we obtain

M
(
S j
)− M(S) � M

(
Tj
)+ M

(
Q′′

j

)
− M(S U ).

The right hand side converges to zero as j → +∞, due to (D.5) and (D.11). Thus, we deduce
that lim sup j→+∞ M(S j ) � M(S), and hence M(S j ) → M(S) as j → +∞. Finally, we
define R j := R − P ′

j − C j . Then, (D.13) gives S j − S0 = ∂ R j and the lemma follows. ��
Proof of Proposition 12. Let S0, S be given, as in the statement. By applying Lemma 23,
we find a sequence of locally polyhedral chains S j ∈ Mn(Ω; G) and a sequence of finite-

mass (n + 1)-chains R̃ j , compactly supported in Ω , such that S j → S in the F-norm,

M(S j ) → M(S) and S j = S0 + ∂ R̃ j for any j . Since S0, S j are locally polyhedral in Ω ,

∂ R̃ j is polyhedral. We apply Lemma 21 to each R̃ j . We find polyhedral (n + 1)-chains R j ,
compactly supported in Ω , and (n + 2)-chains C j of finite mass, such that

R̃ j = R j + ∂C j .

Then, S j = S0 + ∂(R j + ∂C j ) = S0 + ∂ R j , and the proposition follows. ��
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D.2. A Characterisation of the Mass of a Rectifiable Chain

For any linear subspace L ⊆ R
n+k , we let πL : Rn+k → L be the orthogonal projection

onto L . A n-chain of class C1 is a chain S that can be written in the form S = f∗ P , with f
a map of class C1 and P a polyhedral chain. The set of rectifiable n-chains is defined as the
closure of n-chains of class C1 with respect to theM-norm.

Lemma 24. Let S ∈ Mn(Rn+k; G) be a rectifiable n-chain. Then,

M(S) = sup
(Ui , Li )i∈N

+∞∑
i=0

M
(
πLi ,∗ (S Ui )

)
,

where the supremum is taken over all sequences of pairwise disjoint open sets Ui and n-
planes Li ⊆ R

n+k .

If the coefficient group satisfies (D.1), as is the case for G = πk−1(N ), then any chain of
finite mass is rectifiable, by White’s Rectifiability Theorem [55, Theorem 7.1]. Therefore,
Lemma 24 implies Lemma 14.

Proof. Let (Ui )i∈N be a sequence of pairwise disjoint open sets, and let (Li )i∈N be a
sequence of n-planes in Rn+k . For any i , the projection πLi is a 1-Lipschitz map and hence
M(πLi ,∗(S Ui )) � M(S U ) (see e.g. [26, Eq. (5.1)]). Since the Ui ’s are assumed to be
pairwise disjoint, we obtain

+∞∑
i=0

M
(
πLi ,∗ (S Ui )

)
�

+∞∑
i=0

M (S Ui ) � M(S). (D.14)

This proves one of the inequalities. To prove the opposite inequality, we first suppose that S is
a C1-polyhedron, then a C1-chain, and finally we extend the result to an arbitrary rectifiable
chain. We denote by int A the interior of a set A ⊆ R

n+k , and by diam A its diameter.

Step 1. (S is a C1-polyhedron) We suppose that S = f∗(σ �K �), where σ ∈ G, K is a
convex, compact n-polyhedra, and f : Rn+k → R

n+k is a C1-diffeomorphism. Let η > 0
be arbitrarily fixed. Since f is C1 and K is compact, there exists ρ > 0 such that

‖∇ f (x) − ∇ f (y)‖ � η if (x, y) ∈ K × K and |x − y| � ρ, (D.15)

where ‖ · ‖ denotes the operator norm on the space of real (n + k) × (n + k)-matrices.
Let (Ti )

q
i=1 be a collection of n-simplices that triangulate K , such that

max
1�i�q

diam Ti � ρ. (D.16)

Let Vi := intU (Ti , ρ/2, ρ/2) where U (Ti , ρ/2, ρ/2) is defined as in (3.1), and Ui :=
f (Vi ). TheUi ’s are pairwise disjoint open sets, because f is a diffeomorpism. Let L be the n-
plane passing through the origin that is parallel to K . For any i , we choose a point xi ∈ int Ti
and we define Li := ∇ f (xi )(L). The Li ’s are indeed n-planes, because ∇ f (xi ) is an
invertible linear map. For any x ∈ K ∩ Ti and any y ∈ L , we have

∣∣(πLi ◦ ∇ f )(x) y − ∇ f (x) y
∣∣

�
∣∣(πLi ◦ ∇ f )(xi ) y − ∇ f (xi ) y

∣∣+ 2 ‖∇ f (xi ) − ∇ f (x)‖ |y|
(D.15)−(D.16)

� 2η |y| .
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Therefore, by applying the area formula we obtain

∣∣M (πLi ,∗ (S Ui )
)− M (S Ui )

∣∣
� |σ |∗

∣∣H n ((πLi ,∗ ◦ f
)
(K ∩ Vi )

)− H n ( f (K ∩ Vi ))
∣∣

� Cη |σ |∗ H n (K ∩ Vi )

for some constant C depending only on n, k. This implies

q∑
i=1

M
(
πLi ,∗ (S Ui )

)
�

q∑
i=1

M (S Ui ) − Cη |σ |∗
q∑

i=1

H n (K ∩ Vi )

� M (S ∪i Ui ) − Cη |σ |∗ H n(K ),

where η is arbitrarily small. To complete the proof in this case, it only remains to notice that
M(S) = M(S ∪i Ui ), because H

n(K\ ∪i Vi ) = 0 and H n(S\ ∪i Ui ) = 0 by the area
formula.

Step 2. (S is a C1-chain) We suppose that S = f∗ P , where P is a polyhedral n-chain and
f : Rn+k → R

n+k is a C1-diffeomorphism. This case follows easily from the previous one,
by additivity. Indeed, let us write S = ∑p

j=1 σ j �K j � with σ j ∈ G, K j a convex, compact

n-polyhedra. Given positive parameters δ, γ , let W j := f (intU (K j , δ, γ )). For δ, γ small

enough, the W j have pairwise disjoint interiors. Let η > 0 be fixed. By applying Step 1, for

any j we find a sequence (V j
i )i∈N of pairwise disjoint open sets and a sequence (L j

i )i∈N
of n-planes such that

+∞∑
i=0

M

(
π

L j
i ,∗
(

f∗
(
σ j �K j �

)
U j

i

))
� M

(
f∗
(
σ j �K j �

))− η. (D.17)

WedefineU j
i := V j

i ∩W j . TheU j
i ’s are pairwise disjoint open sets.WehaveH n(K j \intU (K j , δ, γ )) =

0 and hence, by the area formula,M( f∗(σ j �K j �) (Rn+k\W j )) = 0. Therefore, we obtain

∑
i, j

M

(
π

L j
i ,∗
(

f∗
(
σ j �K j �

)
U j

i

))

=
∑
i, j

M

(
π

L j
i ,∗
(

f∗
(
σ j �K j �

)
V j

i

)) (D.17)

� M(S) − pη

and the lemma is proved also in this case, because η may be taken arbitrarily small.

Step 3. (S is a rectifiable chain) Since S is rectifiable, for any η > 0 there exist a polyhedral
n-chain P and a C1-diffeomorphism f : Rn+k → R

n+k such that

M(S − f∗ P) � η (D.18)

(see e.g. [55, 1.2 at p. 169] and the references therein). By Step 2, there exists a sequence
(Ui , Li )i∈N such that

+∞∑
i=0

M
(
πLi ,∗ ( f∗ P Ui )

)
� M ( f∗ P) − η. (D.19)
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Let us set Q := S− f∗ P . Then, using the linearity ofπLi ,∗, · Ui , and the triangle inequality
for M, we obtain

+∞∑
i=0

M
(
πLi ,∗ (S Ui )

)
�

+∞∑
i=0

M
(
πLi ,∗ ( f∗ P Ui )

)−
+∞∑
i=0

M
(
πLi ,∗ (Q Ui )

)

(D.14), (D.19)
� M ( f∗ P)−η−M (Q)

(D.18)
� M (S)−3η

so the lemma follows. ��
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