Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.
Minimal silting modules and ring extensions
Angeleri, Lidia;
2022-01-01
Abstract
Ring epimorphisms often induce silting modules and cosilting modules, termed minimal silting or minimal cosilting. The aim of this paper is twofold. Firstly, we determine the minimal tilting and minimal cotilting modules over a tame hereditary algebra. In particular, we show that a large cotilting module is minimal if and only if it has an adic module as a direct summand. Secondly, we discuss the behavior of minimality under ring extensions. We show that minimal cosilting modules over a commutative noetherian ring extend to minimal cosilting modules along any flat ring epimorphism. Similar results are obtained for commutative rings of small homological dimension.File | Dimensione | Formato | |
---|---|---|---|
minimal silting.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
220.47 kB
Formato
Adobe PDF
|
220.47 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
minimal-silting-accepted.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Copyright dell'editore
Dimensione
415.14 kB
Formato
Adobe PDF
|
415.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.