We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in A, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.

PARAMETRIZING TORSION PAIRS IN DERIVED CATEGORIES

Angeleri, Lidia.;
2021

Abstract

We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in A, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.
t-structure, silting, cosilting, derived category, ring epimorphism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1054595
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact