We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in A, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.
PARAMETRIZING TORSION PAIRS IN DERIVED CATEGORIES
Angeleri, Lidia.;
2021-01-01
Abstract
We investigate parametrizations of compactly generated t-structures, or more generally, t-structures with a definable coaisle, in the unbounded derived category D(Mod-A) of a ring A. To this end, we provide a construction of t-structures from chains in the lattice of ring epimorphisms starting in A, which is a natural extension of the construction of compactly generated t-structures from chains of subsets of the Zariski spectrum known for the commutative noetherian case. We also provide constructions of silting and cosilting objects in D(Mod-A). This leads us to classification results over some classes of commutative rings and over finite dimensional hereditary algebras.File | Dimensione | Formato | |
---|---|---|---|
AHrbek 2.pdf
solo utenti autorizzati
Tipologia:
Versione dell'editore
Licenza:
Copyright dell'editore
Dimensione
606.48 kB
Formato
Adobe PDF
|
606.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AH_revision_final.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Copyright dell'editore
Dimensione
566.63 kB
Formato
Adobe PDF
|
566.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.