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Abstract. We investigate parametrizations of compactly generated t-

structures, or more generally, t-structures with a definable coaisle, in the un-
bounded derived category D(Mod-A) of a ring A. To this end, we provide a

construction of t-structures from chains in the lattice of ring epimorphisms

starting in A, which is a natural extension of the construction of compactly
generated t-structures from chains of subsets of the Zariski spectrum known

for the commutative noetherian case. We also provide constructions of silt-

ing and cosilting objects in D(Mod-A). This leads us to classification results
over some classes of commutative rings and over finite dimensional hereditary

algebras.

1. Introduction

Since the seminal work of Gabriel, Hopkins, and Neeman, it is well known that
over a commutative noetherian ring A many important structures in the category
of modules Mod-A and its derived category D(Mod-A) are controlled by subsets
of the Zariski spectrum. For example, the hereditary torsion pairs in Mod-A are
parametrized by the specialization-closed subsets of Spec (A), that is, by unions
of Zariski-closed subsets. Similarly, it was shown by Alonso, Jeremı́as and Saoŕın
in [3] that the compactly generated t-structures in D(Mod-A) are parametrized by
descending chains of specialization-closed subsets of Spec (A).

The aim of this paper is to interpret these results from the viewpoint of silting
theory and to establish similar results over further classes of rings, notably rings of
weak global dimension at most one.

Silting theory is a useful tool to study decompositions and localizations of cat-
egories both at abelian and triangulated level. Indeed, the silting objects in the
derived category D(Mod-A) of a ring A correspond bijectively to certain TTF triples
(U ,V,W) consisting of a t-structure with an adjacent co-t-structure. Dual results
hold for cosilting objects, implying for example that every compactly generated
TTF triple which is non-degenerate corresponds to a pure-injective cosilting ob-
ject. There are also abelian versions of these results. Indeed, (co)silting modules,
which are by definition the zero cohomologies of (co)silting complexes of length two,
correspond bijectively to certain torsion pairs in the module category Mod-A.

In previous work [11], we have already seen that, over a commutative noether-
ian ring A, (co)silting modules are in bijection with hereditary torsion pairs. The
classification result from [3] mentioned above then shows that every compactly gen-
erated t-structure in D(Mod-A) encodes a sequence of nested cosilting torsion pairs
in Mod-A. In Theorem 3.8, we determine the conditions ensuring that this sequence
gives rise to a cosilting complex in D(Mod-A), obtaining a parametrization of the
pure-injective cosilting objects over A in terms of chains of subsets of Spec (A).
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Lidia Angeleri Hügel was partially supported by Istituto Nazionale di Alta Matematica INdAM-
GNSAGA. Michal Hrbek was supported by the Czech Academy of Sciences Programme for research
and mobility support of starting researchers, project MSM100191801.

1
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An essential ingredient for this classification is a result from [36] stating that all
pure-injective cosilting objects over commutative noetherian rings are of cofinite
type, i.e. they correspond to compactly generated TTF triples. In Theorem 3.11 it
turns out that the same holds true over hereditary rings.

Inspired by these findings, we proceed to investigate possible parametrizations
of cosilting objects over further classes of rings. The idea is to replace chains of
subsets of the prime spectrum of A by chains of ring epimorphisms starting in A.

Ring epimorphisms with nice homological properties starting in a given ring A
form a complete lattice which is known to be related with silting modules. In [14]
it is shown that the homological ring epimorphisms starting in a hereditary ring A
are in bijection with minimal silting modules, that is, silting modules satisfying a
certain minimality condition. Here we discuss the connection with cosilting mod-
ules. Given an arbitrary ring A, we provide a general construction of a cosilting
A-module from a ring epimorphism λ : A→ B which satisfies a certain homological
condition (Theorem 4.16). As a consequence, we prove that the homological ring
epimorphisms starting in a ring of weak global dimension at most one, or in a com-
mutative noetherian ring, are in bijection with a class of cosilting modules which
we call minimal (Corollaries 4.18, and 4.19). If the ring A is hereditary, then mini-
mal silting and cosilting modules correspond to each other under a silting-cosilting
duality (Corollary 4.21).

We then turn to a chain · · ·λn ≤ λn+1 · · · inside the lattice of ring epimorphisms
starting in a given ring A. If all λn satisfy our homological condition, we obtain
a chain of cosilting classes which gives rise to a t-structure (U ,V) and a TTF
triple (U ,V,W) in the derived category of A (Proposition 5.4). We show that
this construction is a natural extension of the construction of compactly generated
t-structures from chains of subsets of the Zariski spectrum for the commutative
noetherian case.

The coaisle V obtained from our construction is a definable subcategory of the
derived category, that is, it is determined by a set of morphisms between compact
objects. Conversely, when the ring A has weak global dimension at most one, every
t-structure (U ,V) with definable coaisle V encodes a sequence of nested cosilting
classes, and we see that it arises from a chain of ring epimorphisms according to our
construction if and only if all cosilting classes involved are minimal (Theorem 5.12).
We also provide a dual construction and determine the conditions ensuring that the
TTF triples we obtain are induced by a cosilting or a silting object, respectively.
Again, if A is hereditary, such silting and cosilting objects will be related to each
other by a silting-cosilting duality.

Finally, we apply our investigations to specific classes of rings. We provide clas-
sification results over commutative rings of weak global dimension at most one
and over semihereditary rings (Subsection 6.2). When A is a finite dimensional
hereditary algebra over a field, we observe that the compact silting complexes
correspond to finite chains of finite dimensional homological ring epimorphisms
0A ≤ λn ≤ . . . ≤ λm ≤ idA (Theorem 6.7). Then we focus on the case when A is
the path algebra of the Kronecker quiver • //// • . In Theorem 6.9 we give a com-
plete classification of all compactly generated t-structures. We show that the chains
of homological ring epimorphisms · · ·λn ≤ λn+1 · · · with meet 0A : A→ 0 and join
idA correspond to silting and cosilting objects, and we give a parametrization of all
pure-injective cosilting complexes and their dual silting complexes (Theorems 6.11
and 6.12). Similar results are obtained for the ring Z and, more generally, for
commutative noetherian rings of Krull dimension at most one (Theorem 6.1, and
Examples 5.6 and 6.2).
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The paper is organized as follows. Section 2 contains some preliminaries. In
particular, we review the notions of definability and purity in derived categories
and investigate the role of duality in this context. In Section 3 we discuss com-
pactly generated TTF triples in derived categories. We establish a duality between
compactly generated TTF triples in D(Mod-A) and D(A-Mod) which restricts to a
silting-cosilting duality. Then we focus on the special cases when A is commutative
noetherian or hereditary. Section 4 is devoted to the connection between cosilting
modules and ring epimorphisms. In Section 5 we deal with chains of ring epi-
morphisms and develop our construction of TTF triples. The classification results
mentioned above are established in Section 6.

2. Preliminaries

2.1. Notation. Throughout this paper, let A be a (unital) ring, Mod-A the cate-
gory of right A-modules, and mod-A its subcategory of finitely presented modules.
All subcategories are supposed to be full and strict. We denote by Proj-A and
proj-A the class of all projective and of all finitely generated projective right A-
modules, respectively. For any additive subcategory C of Mod-A we let K(C) (resp.
Kb(C)) denote the homotopy category of all complexes (resp. bounded complexes)
with coordinates in C. Furthermore, we write D(Mod-A) for the unbounded derived
category of Mod-A, and Dc(Mod-A) = Kb(proj-A) for the subcategory of compact
objects in D(Mod-A). We refer the reader to [59] for the definitions and basic facts
about K-projective, K-injective, and K-flat resolutions of complexes.

Given a module M ∈ Mod-A, we denote by AddM the class of all modules which
are isomorphic to direct summands of direct sums of copies of M , and by GenM
the class of all M -generated modules, i. e. all epimorphic images of modules in
AddM . CogenM and ProdM are defined dually.

Given a subcategory C of Mod-A and a set of non-negative integers I (which
is usually expressed by symbols such as ≥ n, ≤ n, or just n, with the obvious
associated meaning), we denote by

C⊥I = {X ∈ Mod-A | ExtiR(C, X) = 0 for all i ∈ I}
⊥IC = {X ∈ Mod-A | ExtiR(X, C) = 0 for all i ∈ I}.

If C consists of a single module M , we just write M⊥I , ⊥IM , etc.
We use a similar notation in the derived category D(Mod-A). Given a class of

objects X in D(Mod-A) and a set of integers I, we denote

⊥IX := {Y ∈ D(Mod-A) | HomD(Mod-A)(Y,X[i]) = 0 for all X ∈ X and i ∈ I}

X⊥I := {Y ∈ D(Mod-A) | HomD(Mod-A)(X,Y [i]) = 0 for all X ∈ X and i ∈ I}.

2.2. Duality. We consider the two following dualities on D(Mod-A). The first is
the functor

(−)∗ := RHomA(−, A) : D(Mod-A)→ D(A-Mod).

Recall that (−)∗ restricts to a contravariant equivalence between the categories of
finitely generated projective right and left A-modules, respectively. By dévissage,
this further extends to a contravariant equivalence (−)∗ : Dc(Mod-A) ∼= Dc(A-Mod).

For the second duality we fix a commutative ring k such that A is a k-algebra,
and an injective cogenerator W in Mod-k. For example, one can choose k = Z
and W = Q/Z. We denote by (−)+ = Homk(−,W ) the duality functors between
Mod-A and A-Mod and we use the same notation on the derived level:

(−)+ := RHomk(−,W ) : D(Mod-A)→ D(A-Mod).
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As W is an injective k-module, the functor (−)+ is represented by the ordinary
Hom-functor Homk(−,W ). By abusing the notation, we will use the same notation
for the functors defined on the left hand side:

(−)∗ := RHomAop(−, A) : D(A-Mod)→ D(Mod-A).

(−)+ := RHomk(−,W ) : D(A-Mod)→ D(Mod-A).

Let A and B be two k-algebras. The category of all A−B-bimodules is equivalent
to the category of all right modules over the ring B ⊗k Aop. In this way, we define
the derived category of all A − B-bimodules as D(A − B) = D(Mod-(B ⊗k Aop)).
Let X ∈ D(Mod-A), Y ∈ D(A − B), and Z ∈ D(Mod-B). Then we have the
adjunction isomorphism in Mod-k:

HomD(Mod-B)(X ⊗L
A Y,Z) ∼= HomD(Mod-A)(X,RHomB(Y, Z)),

as well as its “enriched” version in D(Mod-k):

(2.0.1) RHomB(X ⊗L
A Y,Z) ∼= RHomA(X,RHomB(Y,Z)).

The following formulas will be useful in the sequel:

Lemma 2.1. (i) For any X ∈ D(Mod-A) and any n ∈ Z we have Hn(X+) ∼=
H−n(X)+, and Hn(X) = 0 if and only if H−n(X+) = 0.

(ii) For any X ∈ D(Mod-A) and Y ∈ D(A-Mod) we have natural isomorphisms
(in D(Mod-k)):

RHomAop(Y,X+) ∼= (X ⊗L
A Y )+ ∼= RHomA(X,Y +).

(iii) For any compact object S ∈ Dc(Mod-A) and any complex X ∈ D(Mod-A)
we have a natural isomorphism

RHomA(S,X) ∼= X ⊗L
A S
∗.

(iv) For any compact object S ∈ Dc(Mod-A) and any X ∈ D(Mod-A) we have
a natural isomorphism

RHomA(S,X)+ ∼= (S ⊗L
A X

+).

Proof. (i) The isomorphism of cohomology modules follows directly from (−)+ :
Mod-A → A-Mod being an exact contravariant functor. The second claim follows
from (−)+ being a faithful functor, ensured by the assumption that W is a cogen-
erator.

(ii) This follows by applying the enriched derived Hom-⊗ adjunction from (2.0.1)
twice - once directly for Y ∈ D(A− k), yielding

(X ⊗L
A Y )+ ∼= RHomA(X,Y +),

and once using the left module version for X ∈ D(k −A):

RHomAop(Y,X+) ∼= (X ⊗L
A Y )+.

(iii) Follows from [5, Proposition 20.11] and dévissage.
(iv) Using (ii) and (iii) we have RHomA(S,X)+ ∼= (X ⊗L

A S∗)+ ∼=
RHomAop(S∗, X+) ∼= (S ⊗L

A X
+). �

2.3. Definable subcategories. Next, we turn to a concept introduced in [39].
A subcategory V of D(Mod-A) is said to be definable if there is a set Φ of maps
between compact objects of D(Mod-A) such that

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is surjective for each f ∈ Φ}.
This notion is the derived analogue of the notion of a definable subcategory in
Mod-A. Recall that any definable subcategory D of Mod-A has a dual definable
subcategory D∨ in A-Mod which is uniquely determined by the property that a
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right A-module M lies in D if and only if M+ lies in D∨. We are now going to
prove an analogous result on derived level.

To this end, we need some alternative descriptions of definability.

Lemma 2.2. Let V be a subcategory of D(Mod-A). The following conditions are
equivalent:

(i) V is definable;
(ii) there is a set Φ of morphisms between compact objects of D(Mod-A) such

that
V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is injective for all f ∈ Φ};

(iii) there is a set Φ of morphisms between compact objects of D(Mod-A) such
that
V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ}.

Proof. The statement follows by a simple argument using the long exact sequence
obtained by applying HomD(Mod-A)(−, X) onto a triangle in Dc(Mod-A), see also
[20, Lemma 3.1]. �

Some comments on condition (iii) are in order. First of all, recall that a map
f : X → Y in an additive category is zero if it is the zero element of the abelian
group Hom(X,Y ), or equivalently, if it is the unique map between X and Y which
factors through the zero object. The advantage of the description in (iii) is that
the condition on a map being zero is preserved and reflected by the duality functor
(−)+, unlike the two other conditions which are dual to each other.

Lemma 2.3. Let Φ be a set of morphisms between objects in Dc(Mod-A), and let
Φ∗ = {f∗ | f ∈ Φ} be the set of their duals in Dc(A-Mod). Let

V = {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ}
and

V∨ = {X ∈ D(A-Mod) | HomD(A-Mod)(f,X) is zero for all f ∈ Φ∗}
be the corresponding definable categories of D(Mod-A) and D(A-Mod), respectively.

Then the following properties hold:

(i) for any X ∈ D(Mod-A), we have X ∈ V if and only if X+ ∈ V∨;
(ii) for any Y ∈ D(A-Mod) we have Y ∈ V∨ if and only if Y + ∈ V.

Proof. For any f ∈ Φ and any X ∈ D(Mod-A), we have

HomD(Mod-A)(f,X) is zero⇔ H0 RHomA(f,X) is zero⇔

⇔ H0 RHomA(f,X)+ is zero.

We continue by computing as follows using the natural isomorphisms from
Lemma 2.1:

H0 RHomA(f,X)+ ∼= H0(X ⊗L
A f
∗)+ ∼=

∼= H0 RHomAop(f∗, X+) ∼= HomD(A-Mod)(f
∗, X+).

In conclusion, the morphism HomD(Mod-A)(f,X) is zero if and only if

HomD(A-Mod)(f
∗, X+) is zero, which establishes (i).

(ii) The claim follows by the same argument applied to Φ∗, as Φ∗∗ = Φ. �

We will say that V and V∨ as above are dual definable subcategories.

Remark 2.4. Given a definable subcategory V of D(Mod-A), its dual definable
subcategory is uniquely determined by the rule V∨ = {X ∈ D(A-Mod) | X+ ∈ V}.
Also, since Φ∗∗ = Φ, we have that (V∨)∨ = V, and in particular we have for any
X ∈ V that X++ ∈ V.
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For a subcategory C of D(Mod-A) (or D(A-Mod)), we set C∗ = {X∗ | X ∈ C}
and C+ = {X+ | X ∈ C}.

Lemma 2.5. Let S be a set of compact objects in Dc(Mod-A). Then V = S⊥0 and
V ′ = (S∗)⊥0 are dual definable subcategories.

Proof. This is a special case of Lemma 2.3 by noticing that S⊥0 is equal to the
definable subcategory {X ∈ D(Mod-A) | HomD(Mod-A)(f,X) is zero for all f ∈ Φ}
corresponding to the set of identity morphisms Φ = { idS : S → S | S ∈ S}. �

2.4. Purity. We briefly recall some basic notions from the theory of purity in
derived categories, for details and further references we refer the reader e.g. to
[23, 38, 43]. Along the way, we show that several classical results on the relation of
purity with duality admit a natural generalization to the derived setting.

A triangle X → Y → Z
h−→ X[1] in D(Mod-A) is a pure tri-

angle if it is taken to a short exact sequence of abelian groups 0 →
HomD(Mod-A)(S,X) → HomD(Mod-A)(S, Y ) → HomD(Mod-A)(S,Z) → 0 by every
functor HomD(Mod-A)(S,−) given by a compact object S ∈ Dc(Mod-A). This is fur-
ther equivalent to h being a phantom map in D(Mod-A), that is, HomD(Mod-A)(S, h)
is a zero map in Mod-k for any compact object S ∈ D(Mod-A).

If X → Y → Z → X[1] is a pure triangle, we say that X is a pure subobject and
Z is a pure quotient of Y . An object X ∈ D(Mod-A) is pure-injective if every pure
triangle X → Y → Z → X[1] in D(Mod-A) is a split triangle, or equivalently, if
the functor HomD(Mod-A)(−, X) takes pure triangles in D(Mod-A) to short exact
sequences of abelian groups.

The following Lemma shows that the usual characterization of pure-exact se-
quences in module categories extends to the derived setting.

Lemma 2.6. Let X → Y → Z
h−→ X[1] be a triangle in D(Mod-A). Then the

following conditions are equivalent:

(i) the triangle X → Y → Z
h−→ X[1] is pure in D(Mod-A),

(ii) the triangle X ⊗L
A C → Y ⊗L

A C → Z ⊗L
A C

h⊗L
AC−−−−→ X[1] ⊗L

A C is pure in
D(Mod-k) for any object C ∈ D(A-Mod),

(iii) the triangle Z+ → Y + → X+ h+[1]−−−→ Z+[1] in D(A-Mod) is split.

Proof. (i)⇒ (ii) : Let first C be a compact object of D(A-Mod). By Lemma 2.1(iii),
the triangle from condition (ii) is isomorphic to the triangle

RHomA(C∗, X)→ RHomA(C∗, Y )→ RHomA(C∗, Z)→ RHomA(C∗, X[1]).

If P is a compact object in D(Mod-k), then we have an adjunction
HomD(Mod-k)(P,RHomA(C∗,−)) ∼= HomD(Mod-A)(P ⊗L

k C
∗,−), and P ⊗L

k C
∗ is

a compact object of D(Mod-A). Therefore, the purity of the triangle above in
D(Mod-k) follows from (i). For a general object C ∈ D(A-Mod) we argue as fol-
lows. Let F be a cochain complex quasi-isomorphic to C such that F is K-flat and
consists of flat left A-modules, such a complex exists by [59]. By [26, Theorem 1.1],
F can be written as a direct limit F = lim−→i∈I Fi of perfect complexes in the cate-

gory of cochain complexes of left A-modules. If P is a compact object in D(Mod-k)
and U is an object in D(Mod-A), we have natural isomorphisms

HomD(Mod-k)(P,U ⊗A F ) ∼= HomD(Mod-k)(P,U ⊗A lim−→
i∈I

Fi) ∼=

∼= HomD(Mod-k)(P, lim−→
i∈I

(U ⊗A Fi)) ∼= lim−→
i∈I

HomD(Mod-k)(P,U ⊗A Fi).
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For the last isomorphism, consult [55, Proposition 5.4]. Therefore,
HomD(Mod-k)(P,−) sends the triangle from (ii) to a direct limit of exact sequences
of abelian groups, and thus to an exact sequence as required.

(ii) ⇒ (iii) : To establish the splitting of the triangle in condition (iii), it
is enough to show that the map h+ is zero. For any object C ∈ D(A-Mod),
Lemma 2.1(ii) yields natural equivalences of morphisms HomD(A-Mod)(C, h

+) ∼=
H0(h⊗L

AC)+ in Mod-k. Using (ii), the map h⊗L
AC is a phantom map in D(Mod-k),

and therefore H0(h ⊗L
A C) is a zero map. Consequently, we obtain that the map

HomD(A-Mod)(C, h
+) is zero for any C ∈ D(A-Mod). Put differently, h+ is sent

to a zero map in the functor category [D(A-Mod)op,Mod-k] via the Yoneda em-
bedding D(A-Mod) ↪−→ [D(A-Mod)op,Mod-k], and therefore h+ must be zero in
HomD(A-Mod)(X

+[1], Z+) as well, as desired.
(iii) ⇒ (i) : Let S be a compact object in D(Mod-A). By Lemma 2.1(iv),

we have a natural equivalence of maps HomD(Mod-A)(S, h)+ ∼= H0(S ⊗L
A h+) in

Mod-k. Since the triangle Z+ → Y + → X+ → Z+[1] is split, so is the triangle

S ⊗L
A Z

+ → S ⊗L
A Y

+ → S ⊗L
A X

+ S⊗L
Ah

+[1]−−−−−−→ S ⊗L
A Z

+[1], and therefore, using
Lemma 2.1(iv), the map HomD(Mod-A)(S, h)+ ∼= H0(S ⊗L

A h
+) is a zero morphism.

Consequently by duality, the map HomD(Mod-A)(S, h) is zero for any compact object
S ∈ D(Mod-A). Therefore, h is a phantom map in D(Mod-A), showing that the

triangle X → Y → Z
h−→ X[1] is pure. �

It will be useful in the sequel to note that the usual evaluation map has a derived
counterpart enjoying similar properties. Let X be an object of D(A-Mod). Using
the Hom-⊗ adjunction twice, we get the following natural isomorphisms:

HomD(A-Mod)(X,X
++) ∼= HomD(Mod-k)(X

+ ⊗L
A X,W ) ∼= End D(Mod-A)(X

+).

We let εX ∈ HomD(A-Mod)(X,X
++) be the map which corresponds to the identity

of the ring End D(Mod-A)(X
+) under the isomorphism above and call εX : X → X++

the evaluation morphism.
Now let P be a K-projective quasi-isomorphic replacement of X in D(A-Mod).

For any acyclic complex N of right A-modules, we have the adjunction isomorphism
HomK(Mod-A)(N,Homk(P,W )) ∼= HomK(Mod-k)(N⊗AP,W ). Since P is also K-flat,

and Homk(−,W ) is exact, we infer that P+ is a K-injective complex of right A-
modules. Then there is a commutative square of natural isomorphisms

HomD(A-Mod)(X,X
++)

∼=−−−−→ HomK(A-Mod)(P, P
++)

∼=
y ∼=

y
End D(Mod-A)(X

+)
∼=−−−−→ End K(Mod-A)(P

+)

The evaluation map εX ∈ HomD(A-Mod)(X,X
++) corresponds to a map εP ∈

HomK(A-Mod)(P, P
++) which is mapped to the identity in End K(Mod-A)(P

+) under

the vertical arrow. It follows that the homotopy class εP : P → P++ can be repre-
sented by the standard evaluation map given by the rule εnP (x)(f) = f(x) for each
x ∈ Pn and f ∈ (Pn)+ in each coordinate n ∈ Z.

Lemma 2.7. The evaluation map εX : X → X++ realizes X as a pure subobject
of X++ for any X ∈ D(Mod-A).

Proof. As in the discussion above, we can replace εX by a map εP : P → P++,
where P is a quasi-isomorphic K-projective replacement of X such that εP is the
usual evaluation map of cochain complexes. By Lemma 2.6, it is enough to check
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that ε+P : P+++ → P+ is a split epimorphism in D(A-Mod). But it is straightfor-
ward to check that the evaluation map εP+ : P+ → P+++ of cochain complexes
provides the desired section of ε+P . �

Corollary 2.8. Let C be an object in D(Mod-A). Then the following conditions
are equivalent:

(i) C is pure-injective in D(Mod-A),
(ii) the evaluation map εC : C → C++ is a split monomorphism,
(iii) C is isomorphic to a direct summand of D+ for some D ∈ D(A-Mod).

Proof. (i)⇒ (ii) : This follows by combining (i) with Lemma 2.7.
(ii)⇒ (iii) : Obvious.
(iii) ⇒ (i) : By passing to direct summands, it is sufficient to establish the

implication in the case when C = D+. We show that HomD(Mod-A)(−, C) sends pure
triangles in D(Mod-A) to short exact sequences in Mod-k. We apply Lemma 2.6: if

(2.8.1) X → Y → Z
h−→ X[1]

is a pure triangle in D(Mod-A), then the triangle X ⊗L
A D → Y ⊗L

A D → Z ⊗L
A

D
h⊗L

AD−−−−→ X[1]⊗L
AD is pure in D(Mod-k), and the functor Homk(−,W ) takes it to a

split triangle in D(Mod-k). But by adjunction the latter is isomorphic to the triangle
obtained by applying the functor RHomA(−, D+) on the triangle (2.8.1). Passing
to cohomology yields that 0 → HomD(Mod-A)(Z,D

+) → HomD(Mod-A)(Y,D
+) →

HomD(Mod-A)(X,D
+)→ 0 is exact, establishing (i). �

2.5. Torsion pairs and TTF triples. A pair (U ,V) of full additive subcategories
of D(Mod-A) is a torsion pair provided that the following conditions hold:

(1) both U and V are closed under direct summands,
(2) HomD(Mod-A)(U ,V) = 0, and
(3) for any object X ∈ D(Mod-A) there is a triangle

U → X → V → U [1]

in D(Mod-A) with U ∈ U and V ∈ V.

Then U is called the aisle and V the coaisle of the torsion pair.
A torsion pair (U ,V) is a t-structure (resp. co-t-structure) provided that U [1] ⊆ U

(resp. U [−1] ⊆ U). When (U ,V) is a t-structure, the triangle from condition (3) is
determined uniquely up to a unique isomorphism, and it is always isomorphic to a
triangle of form

τU (X)→ X → τV(X)→ τU (X)[1],

where τU (resp. τV) is the right (resp. left) adjoint to the inclusion U ⊆ D(Mod-A)
(resp. V ⊆ D(Mod-A)).

Example 2.9. (i) For each n ∈ Z, consider the following subcategories of
D(Mod-A):

D≤n = {X ∈ D(Mod-A) | Hk(X) = 0 for all k > n}, and

D>n = {X ∈ D(Mod-A) | Hk(X) = 0 for all k ≤ n}.
In the text, we will freely use the alternative symbols D<n = D≤n−1 and D≥n =
D>n−1. We omit a reference to the ground ring A which should always be clear
from the context. It is well-known that the pair (D≤n,D>n) forms a t-structure in
D(Mod-A). The functors τD≤n and τD>n are represented by the soft truncations
τ≤n and τ>n of cochain complexes.
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(ii) The following construction goes back to [34]. Let (T ,F) be a torsion pair
in Mod-A, that is, a pair of full subcategories of Mod-A such that T = ⊥0F and
F = T ⊥0 . Then there is a t-structure (U ,V) in D(Mod-A), where

U = {X ∈ D≤0 | H0(X) ∈ T }, and

V = {X ∈ D≥0 | H0(X) ∈ F},
called the Happel-Reiten-Smalø t-structure. This construction yields an injec-
tive map from the class of torsion pairs in Mod-A to the class of t-structures in
D(Mod-A).

A TTF (torsion-torsion-free) triple is a triple (U ,V,W) formed by two adjacent
torsion pairs (U ,V) and (V,W). It is called suspended (respectively, cosuspended)
if V[1] ⊆ V (respectively, V[−1] ⊆ V).

In other words, a suspended TTF triple is a triple (U ,V,W) such that (U ,V) is
a co-t-structure, and (V,W) is a t-structure, while a cosuspended TTF triple is a
triple (U ,V,W) such that (U ,V) is a t-structure, and (V,W) is a co-t-structure.

A t-structure (U ,V) is said to be stable if U and V are triangulated subcategories
of D(Mod-A), or equivalently, U is a localizing subcategory of D(Mod-A), i.e. a full
triangulated subcategory which is closed under coproducts. If V is also closed under
coproducts, then U is said to be smashing. By [49, Corollary 2.4], every smashing
subcategory U gives rise to a TTF triple (U ,V,W) which is stable, i.e. suspended
and cosuspended.

We say that a torsion pair (U ,V) is non-degenerate if it satisfies⋂
n∈Z
U [n] = 0 =

⋂
n∈Z
V[n].

A suspended TTF triple (U ,V,W) will be called non-degenerate if so is the t-
structure (V,W), and it will be called intermediate if there are integers m ≤ n
such that D≤m ⊆ V ⊆ D≤n. A cosuspended TTF triple (U ,V,W) will be called
non-degenerate if so is the t-structure (U ,V), and it will be called cointermediate
if there are integers m ≤ n such that D≤m ⊆ U ⊆ D≤n.

Moreover, we say that a torsion pair (U ,V), or a TTF triple (U ,V,W), is

• generated by a set of objects S of D(Mod-A) if V = S⊥0 ,
• compactly generated if it is generated by a set of compact objects of

D(Mod-A),
• homotopically smashing if V is closed under directed homotopy colimits (see

[55], [36, Appendix]).

Note that any set of compact objects S in Dc(Mod-A) generates a TTF triple
(⊥0(S⊥0),S⊥0 , (S⊥0)⊥0) by [2, Theorem 4.3] and [62, Theorem 3.11]. Furthermore,
it is shown in [4] that every set of objects S in D(Mod-A) gives rise to a stable
t-structure (Loc(S),S⊥Z) which is generated by the objects of S and all their shifts.
Here Loc (S) denotes the smallest localizing subcategory of D(Mod-A) containing
S.

Of course, every compactly generated t-structure has a definable coaisle, and
by [43, Theorem 3.11] every t-structure with a definable coaisle is homotopically
smashing.

Recall from [39, Fundamental Correspondence] that any definable subcategory of
D(Mod-A) is uniquely determined by the (indecomposable) pure-injective objects
it contains. In what follows, we show that any t-structure with a definable coaisle
is also determined by pure-injectives as a torsion pair. A torsion pair (U ,V) is said
to be

• cogenerated by a subcategory S of D(Mod-A) if U = ⊥0S.
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Proposition 2.10. Let A be a ring and (U ,V) a t-structure in D(Mod-A) such
that the coaisle V is definable. Then (U ,V) is cogenerated by a set of pure-injective
objects of D(Mod-A).

Proof. Let B =
⋂
n∈Z V[n]. By [44, Corollary 6.6], there is a stable TTF triple

(L,B,K) in D(Mod-A). Furthermore, by [44, Proposition 6.11], there is a pure-
injective object C ∈ D(Mod-A) such that the t-structure (U ′,V ′) in D(Mod-A)
defined by U ′ = ⊥≤0C (which exists by [44, Corollary 5.4]) satisfies V ′ = V ∩ K
and V = B ? V ′, where B ? V ′ denotes the subcategory consisting of all objects
X ∈ D(Mod-A) fitting into a triangle B → X → V ′ → B[1] with B ∈ B and
V ′ ∈ V ′. Then U = U ′ ∩ L. By [49, §4, Theorem] or [22, Proposition 2.5], there
is an object B ∈ D(A − A) in the derived category of A-A-bimodules (in fact, B
comes from a suitable homological epimorphism A → B of dg algebras) such that
L = Ker (− ⊗L

A B). Then by adjunction we have L = Ker RHomA(−, B+). In
conclusion, we have U = ⊥0S, where S = {B+[n], C[m] | n ∈ Z,m ≤ 0}. Finally,
we know that C is pure-injective, and B+ is a pure-injective object in D(Mod-A)
by Corollary 2.8(iii). �

2.6. Silting and cosilting TTF triples. We say that an object T ∈ D(Mod-A) is
silting if the pair (T⊥>0 , T⊥≤0) is a t-structure, which we call the silting t-structure
induced by T . Two silting objects T, T ′ ∈ D(Mod-A) are equivalent if they induce
the same t-structure.

In view of the duality results which will be established in Subsection 3.1, it is
convenient to consider the dual notion of a cosilting object in the unbounded derived
category D(A-Mod) of left A-modules over a ring A. An object C ∈ D(A-Mod) is
cosilting if the pair (⊥≤0C,⊥>0C) forms a t-structure, which we call the cosilting
t-structure induced by C. Two cosilting objects are equivalent if they induce the
same t-structure.

A silting object is called a bounded silting complex if it belongs to Kb(Proj-A),
and a cosilting object is called a bounded cosilting complex if it belongs to Kb(A-Inj).

Silting t-structures can be characterized as t-structures fitting into certain TTF
triples.

Theorem 2.11. ([7, Theorem 4.11], [13, Theorem 4.6]) Let (V,W) be a t-structure
in D(Mod-A).

(1) (V,W) is silting if and only if it extends to a TTF triple (U ,V,W) which is
non-degenerate, suspended, and generated by a set of objects of D(Mod-A).

(2) (V,W) is induced by a bounded silting complex if and only if it extends to an
intermediate suspended TTF triple (U ,V,W).

It is proved in [46, Theorem 3.6 and Proposition 3.10] that every intermediate
suspended TTF triple in D(Mod-A) is compactly generated, and that every bounded
cosilting complex is pure-injective, which in particular means that the induced t-
structure is homotopically smashing. More generally, by [43, Theorem 4.6], a t-
structure (U ,V) is induced by a pure-injective cosilting object if and only if it
is non-degenerate and homotopically smashing, and in this case the coaisle V is
automatically definable in D(A-Mod). Combining this with a result from [44] one
obtains the following characterization.

Theorem 2.12. ([44, Proposition 5.7],[43, Theorem 4.6], [7, Theorem 6.13], [46,
Proposition 3.10 and Theorem 3.13]) Let (U ,V) be a t-structure in D(A-Mod).

(1) If the coaisle V is definable then the t-structure extends to a cosuspended
TTF triple (U ,V,W).

(2) (U ,V) is induced by a pure-injective cosilting object if and only if there is a
non-degenerate cosuspended TTF triple (U ,V,W) which is homotopically smashing.
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(3) (U ,V) is induced by a bounded cosilting complex if and only if there is a
cointermediate cosuspended TTF triple (U ,V,W). In particular, (U ,V) is then
homotopically smashing.

We now restrict to compactly generated silting and cosilting t-structures, for
which we will establish a duality result in Subsection 3.1.

Definition 2.13. We say that a silting object T in D(Mod-A) is of finite type if
the induced silting TTF triple is compactly generated. Similarly, we call a cosilt-
ing object C in D(A-Mod) of cofinite type provided that it induces a compactly
generated TTF triple.

By [46, Theorem 3.6 and Example 3.12], any bounded silting complex is of finite
type, but bounded cosilting complexes need not be of cofinite type. However, it
is shown in [35, 36] that every pure-injective cosilting object over a commutative
noetherian ring is of cofinite type, and we are going to see in Theorem 3.11 that
the same holds true over hereditary rings.

As an immediate consequence of Theorems 2.11 and 2.12, we obtain the following
characterization of TTF triples induced by (co)silting objects of (co)finite type.

Corollary 2.14. Let A be a ring. Then:

(i) A compactly generated TTF triple is silting if and only if it is suspended
and non-degenerate.

(ii) A compactly generated TTF triple is cosilting if and only if it is cosuspended
and non-degenerate.

2.7. Silting and cosilting modules. We now focus on bounded silting or cosilting
complexes of length two. The modules that occur as zero cohomologies of such
complexes can be defined as follows. For details we refer to [13, 25].

Definition 2.15. An A-module T is said to be

• silting if it admits a projective presentation P
σ−→ Q → T → 0 such that

GenT coincides with the class

Dσ = {X ∈ Mod-A | HomA(σ,X) is surjective};
• tilting if GenT = T⊥1 , or equivalently, T is silting and the map σ is injec-

tive.

The torsion class GenT generated by a silting (respectively, tilting) module T is
called a silting (respectively, tilting) class. Two silting modules T and T ′ are said
to be equivalent if they generate the same silting class, which amounts to having
the same additive closure AddT = AddT ′.

Cosilting and cotilting modules and classes are defined dually in terms of the
classes CogenC and

Cω = {X ∈ Mod-A | HomA(X,ω) is surjective},
where ω is an injective copresentation of the module C. Two cosilting modules
C,C ′ are equivalent if they cogenerate the same cosilting class, which amounts to
the equality ProdC = ProdC ′.

Here is the connection between silting modules, objects, and t-structures: if T
is a silting module in Mod-A with respect to a projective presentation σ, then σ is
a silting object (of finite type) in D(Mod-A), and the t-structure induced by σ is
the Happel-Reiten-Smalø t-structure (cf. Example 2.9(ii)) arising from the torsion
pair (GenT, T⊥0). Similarly, if C is a cosilting module with respect to an injective
copresentation ω, then ω is a cosilting object in D(Mod-A), and the t-structure
induced by ω arises from the torsion pair (⊥0C,CogenC). We say that C, or the
cosilting class CogenC, is of cofinite type if so is the cosilting object ω.



12 LIDIA ANGELERI HÜGEL AND MICHAL HRBEK

Silting and cosilting classes are definable subcategories of Mod-A, i.e. they are
closed under direct products, direct limits, and pure submodules. In fact, the
cosilting classes are precisely the definable torsion-free classes, cf. [6, Corollary 3.9].

Given a definable subcategory D of Mod-A, we denote by D∨ its dual definable
subcategory in A-Mod determined by the property that a right A module M lies
in D if and only if M+ lies in D∨.

Proposition 2.16. [11, Proposition 3.5] Let σ be a map between projective right
A-modules. If Dσ is a silting class in Mod-A, then Dσ ∨ = Cσ+ is a cosilting class
in A-Mod. Furthermore, if TA is a silting module with respect to σ, then AT

+ is a
cosilting module with respect to σ+.

Corollary 2.17. [11, Corollary 3.6] The assignment D 7→ D∨ defines a bijection
between silting classes in Mod-A and cosilting classes of cofinite type in A-Mod.

3. Compactly generated TTF triples

In this section, we develop some tools to study (co)silting objects of (co)finite
type. First of all, in subsection 3.1 we show that the silting-cosilting duality dis-
cussed above on the level of module categories extends to derived categories. In
subsection 3.2, we see that over a commutative noetherian ring this duality yields
a bijection between (equivalence classes of) silting objects of finite type and pure-
injective cosilting objects. The classification of compactly generated t-structures
from [3] then provides a parametrization of these classes by certain chains of
specialization-closed subsets of the Zariski spectrum. An essential ingredient for
these results is the fact that all pure-injective cosilting objects over a commutative
noetherian ring are of cofinite type, which is proved in [36]. In subsection 3.3 we
establish the same result for hereditary rings.

3.1. Silting-cosilting duality. Our aim in this subsection is to prove a triangu-
lated version of Corollary 2.17.

Theorem 3.1. (cf. [62, Theorem 3.11]) There is a 1-1 correspondence Compactly generated
TTF triples

in D(Mod-A)

 Ψ←→

 Compactly generated
TTF triples

in D(A-Mod)

 .

The correspondence Ψ is given as follows: to the TTF triple in D(Mod-A) generated
by a set of compact objects S in Dc(Mod-A) we assign the TTF triple in D(A-Mod)
generated by the set S∗.

Proof. The only thing we need to prove is that the assignment is well-defined, that
is, if S0 and S1 are two subcategories of Dc(Mod-A) such that S⊥0

0 = S⊥0
1 , then

also (S∗0 )⊥0 = (S∗1 )⊥0 . For any Y ∈ D(A-Mod) we have by Lemma 2.5 that:

Y ∈ (S∗0 )⊥0 ⇔ Y + ∈ S⊥0
0 = S⊥0

1 ⇔ Y ∈ (S∗1 )⊥0 ,

establishing the claim. �

Lemma 3.2. Let (U ′,V ′,W ′) be a compactly generated TTF triple in D(Mod-A)
and (U ,V,W) a compactly generated TTF triple in D(A-Mod) corresponding to each
other via Ψ. Then (U ′,V ′,W ′) is suspended if and only if (U ,V,W) is cosuspended,
and if that is the case, the following holds:

(i)
⋂
n∈Z V ′[n] = 0 if and only if

⋂
n∈Z V[n] = 0.

(ii) If
⋂
n∈ZW ′[n] = 0, then

⋂
n∈Z U [n] = 0.

(iii) (U ′,V ′,W ′) is intermediate if and only if (U ,V,W) is cointermediate.
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Proof. For any Y ∈ V ′, we have (Y [1])+ ∼= Y +[−1], and for any V ∈ V we have
(V [−1])+ ∼= V +[1]. By Lemma 2.5 we infer that V is closed under [−1] if and only
if V ′ is closed under [1].

(i) It follows from Lemma 2.5 that X ∈ V ′[n] if and only if X+ ∈ V[−n].
Therefore, if we assume

⋂
n∈Z V[n] = 0, then for any X ∈

⋂
n∈Z V ′[n] we have

X+ = 0, and therefore X = 0. The other implication is proved in the same way.
(ii) First note that

⋂
n∈ZW ′[n] = V ′⊥Z , and

⋂
n∈Z U [n] = ⊥ZV. Suppose

that V ′⊥Z = 0, and pick an object X ∈ D(A-Mod) belonging to ⊥ZV, which
means that RHomAop(X,V) = 0. By Lemma 2.5, we have V ′+ ⊆ V, and thus
RHomAop(X,V ′+) = 0. By Lemma 2.1, this translates as RHomA(V ′, X+) = 0.
By assumption it follows X+ = 0 in D(Mod-A), and thus X = 0 in D(A-Mod), as
desired.

(iii) Using Lemma 2.5 and Lemma 2.1(i) we infer that for all n ∈ Z, the inclusion
D≥n ⊆ V implies that X+ ∈ V for all X in D≤−n, hence D≤−n ⊆ V ′. Similarly, if
m ∈ Z and V ⊆ D≥m, then for all X in D(Mod-A) the condition X+ ∈ V implies
that X ∈ D≤−m, hence V ′ ⊆ D≤−m. The same argument with the rôles of V and
V ′ switched concludes the proof. �

We can now prove the desired triangulated version of the silting-cosilting duality
from Corollary 2.17. Note that while we showed in Lemma 3.2 that the duality
restricts perfectly well to (co)intermediate TTF triples, the preservation of the
non-degeneracy condition is established only in one direction. This is why the first
map in the following Theorem is only shown to be an injection. However, in §3.2,
we will be able to remove this inadequacy in case R is commutative noetherian.

Theorem 3.3. The correspondence Ψ induces an injective map{
Silting objects of finite type

in D(Mod-A), up to equivalence

}
↪−→
{

Cosilting objects of cofinite type
in D(A-Mod), up to equivalence

}
which is given by the assignment T 7→ T+, and which restricts to a bijection{

Bounded silting complexes
in D(Mod-A), up to equivalence

}
←→

 Bounded cosilting complexes
of cofinite type in D(A-Mod),

up to equivalence

 .

Proof. Let T ∈ D(Mod-A) be a silting object of finite type, let (U ′,V ′,W ′) be the
induced compactly generated suspended non-degenerate TTF triple in D(Mod-A),
and let (U ,V,W) be its image under Ψ in D(A-Mod). By Lemma 3.2, we see that
the compactly generated TTF triple (U ,V,W) is cosuspended and non-degenerate,
and thus it is cosilting by Corollary 2.14. Put C = T+, and let us show that C is
a cosilting object inducing (U ,V,W).

Since T ∈ V ′, we have C ∈ V. For any X ∈ D(A-Mod), we have by Lemma 2.5
and 2.1 that:

X ∈ ⊥>0C ⇔ RHomAop(X,T+) ∈ D≤0 ⇔ RHomA(T,X+) ∈ D≤0 ⇔

⇔ X+ ∈ V ′ ⇔ X ∈ V.
We showed that ⊥>0C = V. It remains to check that U = ⊥≤0C. If X ∈ D(A-Mod)
belongs to U , then HomD(A-Mod)(X,V) = 0. Since V contains C and all its neg-

ative shifts, we infer that X lies in ⊥≤0C. For the other inclusion, consider the
approximation triangle with respect to the t-structure (U ,V):

(3.3.1) τU (X)→ X → τV(X)→ τU (X)[1].

Assume X ∈ ⊥≤0C. By the previous consideration, we have τU (X) ∈ ⊥≤0C and
τV(X) ∈ ⊥>0C. By applying HomD(A-Mod)(−, C) to (3.3.1), we easily see that

τV(X) ∈ ⊥ZC. But since T is a silting complex, it is a generator in D(Mod-A), and
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it is easy to check that C = T+ is then necessarily a cogenerator in D(A-Mod),
implying that τV(X) = 0, and therefore X ∈ U .

Let us now show the second statement. It is clear that if T is a bounded silting
complex in D(Mod-A), then T+ belongs to Kb(A-Inj). Since any bounded silting
object in D(Mod-A) is of finite type, the assignment T 7→ T+ thus restricts as
stated, and we only have to prove surjectivity. Let C be a bounded cosilting
object of cofinite type in D(A-Mod), let (U ,V,W) be the induced cointermediate
cosuspended TTF triple, and (U ′,V ′,W ′) its preimage under Ψ. Then (U ′,V ′,W ′)
is intermediate by Lemma 3.2, and by Theorem 2.11 it is induced by a bounded
silting complex T ∈ D(Mod-A). Then T+ is a bounded cosilting object of cofinite
type inducing (U ,V,W), and the proof is complete. �

3.2. Over commutative noetherian rings. In this section, we focus on com-
mutative noetherian rings and strengthen the statements of Theorem 3.3. Our ar-
guments will rely on some important classification results which we review below.
Let us first briefly recall some terminology. Given a commutative noetherian ring
A and an element p in the prime spectrum Spec (A), we denote by κ(p) = Ap/pAp

the residue field of A at p. The support of a complex of A-modules X is defined
as suppX = {p ∈ Spec (A) | X ⊗L

A k(p) 6= 0}, and the support suppX of a sub-
category X of D(Mod-A) is the union of the supports of the objects of X . Notice
that for a finitely generated A-module M this definition of support agrees with the
classical support Supp M = {p ∈ SpecA |M ⊗A Ap 6= 0}.

By a well-known result due to Neeman and Hopkins, the assignment of support
yields a parametrization of the localizing subcategories of D(Mod-A) by subsets
of Spec (A). Moreover, it was shown by Alonso, Jeremı́as and Saoŕın that the
compactly generated t-structures in D(Mod-A) are parametrized by certain chains
of subsets of Spec (A).

Definition 3.4. A subset P of Spec (A) is said to be closed under specialization if
for all primes p ⊆ q, if p lies in P , then so does q. A filtration by supports of SpecA
is a map Φ : Z −→ P(Spec (A)) such that each Φ(n) is a subset of Spec (A) closed
under specialization and Φ(n) ⊇ Φ(n+ 1) for all n ∈ Z.

Every filtration by supports Φ gives rise to a t-structure (UΦ,VΦ) whose aisle

UΦ = {X ∈ D(Mod-A): Supp Hn(X) ⊆ Φ(n) for all n ∈ Z}

coincides with the smallest suspended cocomplete subcategory of D(Mod-A) which
contains the set {A/p[−n] | n ∈ Z, p ∈ Φ(n)}. Recall from §2.5 that a subcategory
of D(Mod-A) is called localizing if it is a triangulated subcategory closed under
coproducts.

Theorem 3.5. Let A be a commutative noetherian ring.
(1) [47, Theorem 2.8] The assignment L 7→ suppL defines a 1-1 correspondence{

localizing subcategories of D(Mod-A)
}
←→

{
subsets of Spec (A)

}
.

The inverse map assigns to a subset P of Spec (A) the localizing subcategory LP =
Loc {κ(p) | p ∈ P}.

(2) [3, Theorem 3.11] The assignment Φ 7→ (UΦ,VΦ) defines a 1-1 correspondence{
compactly generated

t-structures in D(Mod-A)

}
←→

{
filtrations by supports of Spec (A)

}
.

There is a further ingredient we will need. We have seen in Section 2 that every
compactly generated t-structure is homotopically smashing. Over a commutative
noetherian ring the converse is also true.
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Theorem 3.6. [36] If A is a commutative noetherian ring, every homotopically
smashing t-structure in D(Mod-A) is compactly generated. In particular, every
pure-injective cosilting object is of cofinite type.

We now start by proving the missing implication from Lemma 3.2, which shows
that the map Ψ in Theorem 3.1 respects non-degeneracy.

Lemma 3.7. Let A be a commutative noetherian ring. Then, in the setting of
Lemma 3.2, we have

⋂
n∈Z U [n] = 0 if and only if

⋂
n∈ZW ′[n] = 0.

Proof. We have to prove the only-if-part, or equivalently, we have to show that
⊥ZV = 0 implies V ′⊥Z = 0. Since ⊥ZV = 0, for any prime ideal p ∈ SpecA
there is V ∈ V such that RHomA(κ(p), V ) is not a zero object of D(Mod-A).
By [35, Proposition 2.3], RHomA(κ(p), V ) belongs to V. Furthermore, the ob-
ject RHomA(κ(p), V ) is quasi-isomorphic to a complex of vector spaces over κ(p)
in D(Mod-A), and therefore RHomA(κ(p), V ) ∼=

⊕
n∈ZH

nRHomA(κ(p), V )[−n].
Thus there is n ∈ Z such that HnRHomA(κ(p), V ) is a non-zero vector space
over κ(p). Since V is closed under direct summands, we conclude that for each
p ∈ SpecA there is n ∈ Z such that κ(p)[n] ∈ V.

Let W be an injective cogenerator of Mod-A. By Lemma 2.5,
RHomA(κ(p)[n],W ) ∼= HomA(κ(p),W )[−n] ∈ V ′. Since the non-zero A-module
HomA(κ(p),W ) is again naturally a vector space over κ(p), we see that V ′ con-
tains κ(p)[−n]. Let L = ⊥Z(V ′⊥Z). Then L is a localizing subcategory of D(Mod-A)
and V ′ ⊆ L. In particular, L contains κ(p) for all p ∈ Spec (A), and the subset
of Spec (A) corresponding to L under the bijection in Theorem 3.5(1) must be
P = Spec (A). Thus L = D(Mod-A) and V ′⊥Z = 0, as desired. �

As a consequence, the injective map from Theorem 3.3 is now bijective, and we
obtain a classification of silting and cosilting objects over commutative noetherian
rings which extends [17, Corollary 3.5].

Theorem 3.8. Let A be a commutative noetherian ring. There is a bijective cor-
respondence between

(i) equivalence classes of silting objects of finite type,
(ii) equivalence classes of pure-injective cosilting objects,
(iii) filtrations by supports Φ of Spec (A) such that⋃

n∈Z
Φ(n) = Spec (A) and

⋂
n∈Z

Φ(n) = ∅,

which restricts to a bijective correspondence between

(i’) equivalence classes of bounded silting complexes,
(ii’) equivalence classes of bounded cosilting complexes,

(iii’) filtrations by supports Φ of Spec (A) such that there are integers n ≤ m
with

Φ(n) = Spec (A) and Φ(m) = ∅.

Proof. The bijection between (i) and (ii) is the first part of Theorem 3.3 in con-
junction with Theorem 3.6 and Lemma 3.7.

For the bijection with (iii), we have to show that (UΦ,VΦ) is non-degenerate
if and only if the filtration by supports Φ satisfies the stated conditions. The
condition on the intersection of the Φ(n) follows immediately from the fact that⋂
n∈Z UΦ[n] consists of the objects X ∈ D(Mod-A) whose cohomologies are sup-

ported in
⋂
n∈Z Φ(n). Moreover, if S is a set of compact objects generating (UΦ,VΦ),

then the condition
⋂
n∈Z VΦ[n] = 0 holds if and only if S⊥Z = 0, which amounts to

Loc (S) = D(Mod-A).
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We claim that the subset P of Spec (A) corresponding to Loc (S) under Theo-
rem 3.5 is precisely P =

⋃
n∈Z Φ(n). Indeed, since S ⊆ UΦ, and the support suppX

of a compact object X is given by the classical supports
⋃
n∈Z SuppHn(X) of its

cohomologies, we have suppS ⊆
⋃
n∈Z Φ(n). The localizing subcategory corre-

sponding to
⋃
n∈Z Φ(n) must therefore contain Loc (S), hence P ⊆

⋃
n∈Z Φ(n). On

the other hand, the fact that Loc (S) contains UΦ and thus also the set {A/p[−n] |
n ∈ Z, p ∈ Φ(n)} yields the other inclusion. We conclude using Theorem 3.5 that
the condition Loc (S) = D(Mod-A) is equivalent to

⋃
n∈Z Φ(n) = Spec (A).

For the second part, we combine Theorem 2.12 with Theorem 3.6 to see that
every bounded cosilting complex in D(Mod-A) is of cofinite type. The bijection
between (i′) and (ii′) then follows from the second part of Theorem 3.3. Further-
more, the existence of integers n ≤ m such that D≤n ⊆ UΦ ⊆ D≤m means precisely
that the cohomologies of objects in UΦ are arbitrary in degrees ≤ n and vanish in
degrees > m. In other words, Φ(i) = SpecA for all i ≤ n and Φ(i) = ∅ for all
i > m. This proves the equivalence of (ii′) and (iii′). �

3.3. Over hereditary rings. We know from Theorem 3.6 that homotopically
smashing t-structures over commutative noetherian rings are compactly generated.
The main result of this section establishes the same result over hereditary rings.

In order to be consistent with later sections, it is convenient to switch to the
unbounded derived category D(A-Mod) of left A-modules over a ring A. We as-
sume that A is a left hereditary ring. Then the structure of the derived category
simplifies considerably. Indeed, in this case, for any object X ∈ D(A-Mod) we have
isomorphisms X ∼=

⊕
n∈ZH

n(X)[−n] ∼=
∏
n∈ZH

n(X)[−n] (see e.g. [40, §1.6]). As
a consequence, for all X,Y ∈ D(A-Mod) we have

HomD(A-Mod)(X,Y ) ∼= HomD(A-Mod)(
⊕
n∈Z

Hn(X)[−n],
∏
n∈Z

Hn(Y )[−n]) ∼=

∼=
∏
n∈Z

(HomAop(Hn(X), Hn(Y ))⊕ Ext1
Aop(Hn(X), Hn−1(Y ))).

Let (U ,V) be a t-structure. We fix the notation

Un = {Hn(X) | X ∈ U} and Vn = {Hn(X) | X ∈ V}.
Then the left heredity of A implies that

U = {X ∈ D(A-Mod) | Hn(X) ∈ Un for all n ∈ Z} and

V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z},
as well as the formulas

(3.8.1) Un = ⊥0Vn ∩ ⊥1Vn−1 and Vn = U⊥0
n ∩ U⊥1

n+1.

Lemma 3.9. Let A be a ring, (U ,V) a t-structure in D(A-Mod), and
X ∈ D(A-Mod). Suppose that C is a direct summand of τV(X) such that
HomD(A-Mod)(X,C) = 0. Then C = 0.

Proof. Consider the approximation triangle

τU (X)→ X
g−→ τV(X)→ τU (X)[1].

Since τV(X) = C⊕C ′, and HomD(A-Mod)(X,C) = 0, a general argument in triangu-
lated categories shows that C[−1] is a direct summand of τU (X). Since τU (X) ∈ U ,
and C[−1] ∈ V, this forces C = 0. �

Remark 3.10. For the proof of the next theorem, we will need to invoke a deep
theorem [55, Theorem A] which allows to lift t-structures in D(A-Mod) to the

category D(A-ModI) of coherent diagrams of shape I, where I is a small category.
We provide a short explanation for the process adjusted for our application here.
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The reader is referred to [55] for the unexplained terminology of coherent diagrams,
and to [55, Example 2.4] in particular for the situation of the canonical derivator
of the derived category of a Grothendieck category. Let (U ,V) be a t-structure in
D(A-Mod), and let I be a small category. By [55, Theorem A], there is a t-structure

(UI ,VI) in D(A-ModI), where

UI = {U ∈ D(A-ModI) | Ui ∈ U for all i ∈ I},

VI = {V ∈ D(A-ModI) | Vi ∈ V for all i ∈ I},
where Xi is the i-th component of the coherent diagram X ∈ D(A-ModI). There-

fore, for any X ∈ D(A-ModI) there is an approximation triangle

U →X → V → U [1],

where U ∈ UI and V ∈ VI . By [33, Corollary 4.19], taking the i-th coordinate
yields a triangle

Ui →Xi → Vi → Ui[1]

in D(A-Mod) for any i ∈ I. Since Ui ∈ U and Vi ∈ V, this triangle is necessarily
isomorphic to the approximation triangle of Xi with respect to the t-structure
(U ,V) in D(A-Mod). Thus, Ui

∼= τU (Xi). Let α be an arrow in I. Since τU :
D(A-Mod) → U is the right adjoint to the inclusion of U , it follows by simple
diagram chasing that U (α) = τU (X (α)). Therefore, the coherent diagram U is
given by applying the functor τU onto the coherent diagram X . The analogous
statement for V follows by a dual argument.

Theorem 3.11. Let A be a left hereditary ring. Then any homotopically smashing
t-structure in D(A-Mod) is compactly generated. In particular, every pure-injective
cosilting object is of cofinite type.

Proof. Let (U ,V) be a homotopically smashing t-structure in D(A-Mod). We claim
that for any M ∈ Un, we can write M = lim−→i∈IMi for a directed system (Mi | i ∈ I)

consisting of finitely presented modules from Un. This is enough for the compact
generation of (U ,V) — indeed, by the left heredity of A, any stalk of a finitely
presented left A-module is a compact object of D(A-Mod), and since aisles are
closed under directed homotopy colimits ([55, Proposition 4.2]), we have that (U ,V)
is compactly generated.

To prove the claim, we first use [42, Lemma 5.2] to write M = lim−→i∈I Fi, where Fi

is a finitely presented module such that Fi ∈ ⊥1Vn−1. For each i ∈ I, consider the
approximation triangle of the stalk complex Fi[−n] with respect to the t-structure
(U ,V):

τU (Fi[−n])→ Fi[−n]→ τV(Fi[−n])→ τU (Fi[−n])[1].

Passing to cohomology, we obtain a long exact sequence of form

· · · → 0→ Hn−1τV(Fi[−n])→ HnτU (Fi[−n])→
→ Fi → HnτV(Fi[−n])→ Hn+1τU (Fi[−n])→ 0→ · · ·

Recall that we have τV(Fi[−n]) ∼=
⊕

k∈ZH
k(τV(Fi[−n]))[−k], and also

HomD(A-Mod)(Fi[−n], Hn−1τV(Fi[−n])[−n+1]) ∼= Ext1
Aop(Fi, H

n−1(τV(Fi[−n]))) =

0, as Hn−1(τV(Fi[−n])) ∈ Vn−1. Then Lemma 3.9 applies and shows that
Hn−1(τV(Fi[−n])) = 0. As a consequence, Hn(τU (Fi[−n])) is isomorphic to a
submodule of Fi. Now we use [27, Theorems 2.1.4 and 5.1.6] to see that every
submodule of a finitely presented module over a left hereditary ring has a direct
decomposition in finitely presented modules. Hence Hn(τU (Fi[−n])) is isomorphic
to a direct sum of finitely presented modules, and these have to belong to Un.

Now we consider F = (Fi[−n] | i ∈ I) as an object in D(A-ModI), the category
of all coherent diagrams in D(A-Mod) of shape I. Denote by UI the subcategory
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of D(A-ModI) consisting of those coherent diagrams such that all their coordinates
belong to U , and define VI similarly. By [55, Theorem A], the pair (UI ,VI) forms a

t-structure in the triangulated category D(A-ModI). Consider the approximation
triangle of F with respect to the t-structure (UI ,VI):

U → F → V → U [1].

By [33], the directed homotopy colimit functor is exact, and thus passing to directed
homotopy colimits yields a triangle in D(A-Mod):

(3.11.1) hocolimi∈IU →M [−n]→ hocolimi∈IV → hocolimi∈IU [1].

Since (U ,V) is homotopically smashing, both U and V are closed under directed
homotopy colimits. Therefore, hocolimi∈IU ∈ U and hocolimi∈IV ∈ V. Then
(3.11.1) is an approximation triangle of M [−n] with respect to (U ,V). But since
M ∈ Un, and thus M [−n] ∈ U , we have an isomorphism M [−n] ∼= hocolimi∈IU .
Passing to the n-th cohomology, we obtain

M ∼= Hn(hocolimi∈IU ) ∼= lim−→
i∈I

Hn(τU (Fi[−n])).

But as we have shown above, for each i ∈ I the module Hn(τU (Fi[−n]) is isomorphic
to a direct sum of finitely presented modules, all of which belong to Un. Therefore,
we have a presentation of M as a direct limit of modules from Un ∩ A-mod, as
desired. �

4. Cosilting modules and ring epimorphisms

Inspired by the classification results for commutative noetherian rings in Sec-
tion 3.2, we proceed to investigate possible parametrizations of cosilting objects
over further classes of rings. Instead of chains of subsets of the prime spectrum, we
will use chains of ring epimorphisms.

In this section, we start by investigating the case of a single ring epimorphism.
After some preliminaries in subsection 4.1, we discuss a construction of cosilting
modules from ring epimorphisms in subsection 4.2. Over rings of weak global dimen-
sion at most one, or over commutative noetherian rings, this leads us to a bijection
between homological ring epimorphisms and certain cosilting modules (Corollar-
ies 4.18 and 4.19). Such cosilting modules will be termed “minimal”, as their
construction is dual to the construction of minimal silting modules over hereditary
rings in [14]. In fact, over a hereditary ring minimal silting and cosilting modules
will correspond to each other under silting-cosilting duality (Corollary 4.21).

4.1. Reminder on ring epimorphisms. Let us first recall some notions and
basic results.

Definition 4.1. (1) A ring homomorphism λ : A −→ B is a ring epimorphism if it
is an epimorphism in the category of rings with unit, or equivalently, if the functor
given by restriction of scalars λ∗ : Mod-B −→ Mod-A is fully faithful. Further, λ
is a homological ring epimorphism if in addition TorAi (B,B) = 0 for all i > 0, or
equivalently, the functor given by restriction of scalars λ∗ : D(Mod-B)→ D(Mod-A)
is a full embedding.

(2) Two ring epimorphisms λ1 : A −→ B1 and λ2 : A −→ B2 are said to be
equivalent if there is an isomorphism of rings µ : B1 −→ B2 such that λ2 = µ ◦ λ1.
We then say that λ1 and λ2 lie in the same epiclass of A.

(3) A full subcategory X of Mod-A is called bireflective if the inclusion functor
X −→ Mod-A admits both a left and right adjoint or, equivalently, if it is closed
under products, coproducts, kernels and cokernels.
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Theorem 4.2. [29, 28, 24, 56] The assignment which takes a ring epimorphism
λ : A→ B to the essential image XB of λ∗ defines a bijection between

• epiclasses of ring epimorphisms A→ B,
• bireflective subcategories of Mod-A,

which restricts to a bijection between

• epiclasses of ring epimorphisms A→ B with TorA1 (B,B) = 0,
• bireflective subcategories closed under extensions in Mod-A.

The partial order on bireflective subcategories given by inclusion corresponds
under the bijection in Theorem 4.2 to a partial order on the epiclasses of A defined
by setting

λ1 ≤ λ2

whenever there is a commutative diagram of ring homomorphisms

A
λ1 //

λ2   

B1

B2

µ

>>

Since bireflective subcategories are determined by closure properties, the poset
induced by ≤ is a complete lattice, and the ring epimorphisms A → B with
TorA1 (B,B) = 0 form a sublattice in it by Theorem 4.2.

Notice that over a ring of weak global dimension at most one, every ring epi-
morphism A→ B with TorA1 (B,B) = 0 is already a homological ring epimorphism
and thus has the properties listed in the next theorem. The same holds true when
A is commutative noetherian, since B is then a flat A-module by [16, Proposition
4.5]. For details on recollements, we refer to [49].

Theorem 4.3. [49] Let A be a ring and let λ : A → B be a homological ring
epimorphism. The functor λ∗ : D(Mod-B) → D(Mod-A) given by restriction of
scalars, together with the adjoint functors λ∗ = − ⊗L

A B and λ! = RHomA(B,−),
induces a stable TTF triple in D(Mod-A)

(L = Kerλ∗, B = Imλ∗, K = Kerλ!)

and a recollement

D(Mod-B) λ∗=λ!
// D(Mod-A)

λ!oo

λ∗oo
j!=j∗ // L
j∗oo

j!oo

with j∗ = − ⊗L
A L[−1] where L is the cone of λ. In particular, for every X in

D(Mod-A) there is an approximation triangle with respect to the stable t-structure
(L,B)

j!j
!(X) = X ⊗L

A L[−1] // X // λ∗λ∗(X) = X ⊗L
A B

// j!j!(X)[1]

and an approximation triangle with respect to the stable t-structure (B,K)

λ∗λ
!(X) = RHomA(B,X) // X // j∗j∗(X) = RHomA(L[−1], X) // λ∗λ!(X)[1]

where the maps are given by adjunctions.

For a full subcategory X of Mod-A we consider the full subcategory of D(Mod-A)

DX (A) = {X ∈ D(Mod-A) | Hn(X) ∈ X for all n ∈ Z}.

Theorem 4.4. Let A be a ring, let λ : A→ B be a homological ring epimorphism
and let X be the corresponding bireflective subcategory of Mod-A.

(i) [12, Lemma 4.6] The subcategory B = Imλ∗ equals DX (A).



20 LIDIA ANGELERI HÜGEL AND MICHAL HRBEK

(ii) [12, Lemma 4.2] If BA has projective dimension at most one, the subcategory
K = Kerλ! = Ker RHomA(B,−) equals DC(A) where C = Mod-A ∩ K =
B⊥0,1 .

(iii) [21, Theorem 6.1(a)] If AB has weak dimension at most one, the subcategory
L = Kerλ∗ = Ker (−⊗L

A B) equals DE(A) where E = Mod-A ∩ L = {M ∈
Mod-A |M ⊗A B = 0 = TorA1 (M,B)}.

(iv) [42, Propositions 2.6 and 3.1] If A is hereditary, the stable TTF triple
(L,B,K) is given by

L = D⊥0,1X (A), B = DX (A), K = DX⊥0,1 (A).

Theorem 4.5. [56, Theorem 4.1] Let A be a ring and Σ be a class of morphisms
between finitely generated projective right A-modules. Then there is a ring AΣ and
a ring homomorphism f : A −→ AΣ such that

(1) f is Σ-inverting, i.e. if σ belongs to Σ, then σ⊗AAΣ is an isomorphism of
right AΣ-modules, and

(2) f is universal Σ-inverting, i.e. for any Σ-inverting morphism f ′ : A −→ B
there exists a unique ring homomorphism g : AΣ −→ B such that g◦f = f ′.

The homomorphism f : A −→ AΣ is a ring epimorphism with TorA1 (AΣ, AΣ) = 0,
called the universal localization of A at Σ.

Recall that a ring A is said to be right semihereditary if all its finitely generated
right ideals are projective. It is well known that every finitely generated submodule
of a projective right A-module is then projective, and therefore mod-A consists of
modules of projective dimension at most one.

Theorem 4.6. Let A be a right semihereditary ring. There is a bijection between

(1) wide subcategories (i.e. abelian subcategories closed under extensions) of
mod-A,

(2) epiclasses of universal localizations of A,

which assigns to a wide subcategory M ⊆ mod-A the epiclass of the universal lo-
calization λM at the projective resolutions of the modules in M. If A is right
hereditary, then there is also a bijection with

(3) bireflective extension closed subcategories of Mod-A,

which assigns to a wide subcategoryM⊆ mod-A the perpendicular categoryM⊥0,1 .
Conversely, given a bireflective subcategory X , the associated wide subcategory is
M = ⊥0,1X ∩mod-A.

Proof. The result goes back to [58, Theorem 2.3],[42, Theorem 6.1] for the case
when A is right hereditary. For the semihereditary case one proceeds similarly.
Indeed, first of all, one easily checks that the proof in [58, Lemma 2.1] is still valid.
Given a universal localization λ : A→ B, we can thus assume that λ is the universal
localization at a set Σ of injective morphisms between finitely generated projective
right A-modules. We can then consider the bireflective subcategory X of Mod-A
associated to λ together with its left perpendicular subcategoryM = ⊥0,1X∩mod-A,
which consists of all finitely presented modules M whose projective resolutions are
inverted by B, that is, M⊗AB = TorA1 (M,B) = 0, cf. [57, Theorem 5.2]. Since A is
right coherent and all finitely presented right A-modules have projective dimension
at most one, we infer from [57, Lemma 5.3] thatM is a wide subcategory of mod-A.
By construction, λ lies in the same epiclass as λM. This shows that the assignment
M 7→ λM in the statement is surjective. The injectivity is shown as in [58, Theorem
2.3]. �
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4.2. Minimal cosilting modules. Ring epimorphisms with nice homological
properties can be used to construct silting modules [14, 6]. We now investigate
the dual construction, developing work from [19] on the cotilting case. This is go-
ing to shed some light on the connection between ring epimorphisms and cosilting
modules. In fact, it will turn out that the class of cosilting modules obtained from
the dual construction is in general larger than the class of silting modules arising
from ring epimorphisms, cf. Examples 4.22(4) and (5).

Definition 4.7. Let M be a right A-module, and let C be a class of left A-modules.
We say that M is a C-Mittag-Leffler module if the canonical map

ρ : M ⊗A
∏
i∈I

Ci →
∏
i∈I

(M ⊗A Ci)

is injective for any family {Ci}i∈I of modules in C.

We refer the reader to [32, §5, §6, §13] for the basics on the notions of cotor-
sion pairs, (pre)envelopes and (pre)covers, and tilting cotorsion pairs in module
categories.

Lemma 4.8. Let T be a silting right A-module, and let C = T+. Then every
module in AddT is CogenC-Mittag-Leffler.

Proof. We know from [13] that T is a tilting module over A = A/I where I = {a ∈
A | Ta = 0} is the annihilator of T in A. We consider the tilting cotorsion pair
(A,GenTA) induced by T in Mod-A and the dual cotilting class CogenAC. By [9,
Corollary 9.8], every module in A is CogenAC-Mittag-Leffler. Now, any module

M ∈ AddT is an A-module contained in A. Moreover, since Mod-A is closed under
products and submodules, and C = Homk(T,W ) is an A-module, every module X
in CogenAC is contained in CogenAC and satisfies M ⊗A X ∼= M ⊗A X. Hence

the Mittag-Leffler property over A entails the Mittag-Leffler property over A. �

Proposition 4.9. Let T be a silting right A-module and let

(4.9.1) A
f−→ T0 → T1 → 0

be an exact sequence such that f is a GenT -preenvelope and T1 lies in AddT . Set
C = T+ and Ci = (Ti)

+ for i = 0, 1 and consider the exact sequence

(4.9.2) 0→ C1 → C0
f+

−→ A+.

Then f+ is a CogenC-precover, C1 lies in ProdC, and the subcategory Y =
CogenC ∩ ⊥0C1 is bireflective.

Proof. We know from Proposition 2.16 that C is a cosilting module with cosilt-
ing class CogenC = (GenT )∨. By Hom-⊗-adjunction, for any left A-module X
there is a commutative diagram linking the maps HomA(X, f+), (f ⊗A X)+ and
HomA(f,X+). Thus X ∈ CogenC if and only if X+ ∈ GenT , which in turn means
that HomA(f,X+), or equivalently, HomA(X, f+) is surjective.

Dually to [14, Proposition 3.3], we see that Y is closed under coproducts, kernels
and cokernels. By Hom-⊗-adjunction, ⊥0C1 consists of the left A-modules Y for
which T1 ⊗ Y = 0. Now assume that (Yi)i∈I is a family of left A-modules in Y
and consider Y =

∏
i∈I Yi. Of course Y belongs to CogenC. Moreover, since T1

is CogenC-Mittag-Leffler by Lemma 4.8, we have an injective map ρ : T1 ⊗A Y →∏
i∈I(T1 ⊗A Yi) = 0, showing that Y also belongs to ⊥0C1, and therefore to Y. �

Example 4.10. Let A be the Kronecker algebra, i.e., the path algebra of the quiver
• // // • over a field k. Every homological ring epimorphism λ : A→ B induces

a silting module of the form T = B ⊕ Cokerλ. The silting modules arising in this
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way are termed “minimal” (cf. [14] and Definition 4.20). There is just one silting
module over A (up to equivalence) which is not minimal: the Lukas tilting module
L whose tilting class GenL is given by the right A-modules without indecomposable
preprojective summands.

Consider now the cotilting left A-module W = L+. Up to equivalence, W is
the direct sum of the generic module G and all Prüfer modules S∞, where S runs
through a set of representatives of the simple regular modules (for more details,
we refer to Chapter 6). If we apply Proposition 4.9 on an exact sequence 0 →
A

f−→ L0 → L1 → 0 such that f is a GenL-preenvelope and L1 lies in AddL,

we obtain an exact sequence 0 → C1 → C0
f+

−→ A+ → 0 as in (4.9.2) where

Y = CogenW ∩ ⊥0C1 = 0. Indeed, this follows from GenL ∩ L⊥0
1 = 0, which is

shown in [14, Example 5.10].
On the other hand, A+ also has a CogenW -cover g with an exact sequence

0→ W1 → W0
g−→ A+ → 0, where W1 ∈ AddG and W0 is a direct sum of Prüfer

modules by [53, Theorem 7.1]. Here CogenW∩⊥0W1 = ⊥0,1W1 = ⊥0,1G contains all
Prüfer modules, and it is not closed under direct products, because for every simple
regular module S the countable product S∞

N contains a copy of the generic module
as a direct summand by [54, Proposition 3]. Notice that HomA(W0,W1) = 0, while
C0 and C1 must contain a Prüfer module as a common direct summand.

In view of the discussion above, we introduce the following terminology.

Definition 4.11. A cosilting left A-module C is said to be minimal if there is an
exact sequence

(4.11.1) 0→ C1 → C0
g−→ A+

such that g is a CogenC-precover, C1 lies in ProdC, and

(i) the subcategory CogenC ∩ ⊥0C1 is bireflective, that is, it is closed under
direct products,

(ii) HomA(C0, C1) = 0.

The following conditions are needed to construct minimal cosilting modules from
ring epimorphisms.

Definition 4.12. With the notation from Definition 2.15, we say that

(1) a projective presentation P
σ−→ P ′ → T → 0 of an A-module T is a presilt-

ing presentation if HomD(Mod-A)(σ, σ
(I)[1]) = 0 for all sets I, or equivalently,

GenT ⊆ Dσ;

(2) an injective copresentation 0 → C → I
ω−→ I ′ of an A-module C is a

precosilting copresentation if HomD(Mod-A)(ω
I , ω[1]) = 0 for all sets I, or

equivalently, CogenC ⊆ Cω.

Remark 4.13. A module C has a precosilting copresentation if and only if its
minimal injective copresentation is precosilting, which amounts to the condition
CogenC ⊂ ⊥1C by [6, Lemma 3.3].

Example 4.14. (1) Every (co)silting module has a pre(co)silting (co)presentation.

(2) If λ : A→ B is a ring epimorphism such that B has a presilting presentation
σ, then T = B ⊕ Cokerλ is a silting right A-module with silting class GenT =
GenB ⊆ Dσ by [15, Proposition 1.3].

Furthermore, CogenB+ ⊆ Cσ+ . Indeed, CogenB+ = CogenT+ is a cosilt-
ing class with dual definable subcategory GenT according to Proposition 2.16.
Hence X ∈ CogenB+ entails X+ ∈ Dσ, that is, the morphisms HomA(σ,X+) and
HomAop(X,σ+) are surjective, and X ∈ Cσ+ .
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We conclude that if λ : A→ B is a ring epimorphism such that B has a presilting
presentation, then B+ has a precosilting copresentation. Example 4.22(4) below
will show that the converse is not true.

(3) If λ : A → B is a ring epimorphism such that the left A-module B+ has a

precosilting copresentation, then TorA1 (B,B) = 0. Indeed, the assumption entails

that AB ∈ CogenB+ ⊂ ⊥1B+, hence TorA1 (B,B)+ ∼= Ext1
A(B,B+) = 0.

(4) A ring epimorphism λ : A → B such that the weak dimension of BA is
at most one is homological if and only if the left A-module B+ has a precosilting
copresentation. The if-part follows from (3). For a proof of the only-if-part, we
show that CogenB+ ⊂ ⊥1B+. To this end, observe first that B+ is an injective
left B-module, hence Ext1

A(X,B+) ∼= Ext1
B(X,B+) vanishes for all X ∈ ProdB+.

Now the formula Ext1
A(X,B+) ∼= TorA1 (B,X)+ and the assumption on the weak

dimension of BA ensure that Ext1
A(X,B+) vanishes even for X ∈ CogenB+.

(5) A ring epimorphism λ : A→ B such that the projective dimension of BA is
at most one is homological if and only if B has a presilting presentation. Indeed,
if λ is homological, then Ext1

A(B,X) ∼= Ext1
B(B,X) vanishes for all X ∈ AddB,

hence also for X ∈ GenB. This shows that GenB ⊆ B⊥1 , hence any projective
resolution of BA is a presilting presentation. The converse implication follows from
(2) and (3).

Given a bireflective subcategory X of Mod-A and an R-module M , we call the
unit morphism η : M →MX with respect to the left adjoint to the inclusion X into
Mod-A the X -reflection of M ; the X -coreflection ε : MX → M is defined dually.
Note that if X corresponds to a ring epimorphism λ : A → B via Theorem 4.2,
then the X -reflection of any R-module M is equivalent to the natural map η : M →
B ⊗AM . One can now generalize and refine [19, Theorem 3.3] as follows.

Proposition 4.15. Let λ : A −→ B be a ring epimorphism such that the left A-
module B+ has a precosilting copresentation. Denote by X the associated bireflective
subcategory of A-Mod and set C = CogenX . Then

(1) B+ ⊕Kerλ+ is a minimal cosilting left A-module with cosilting class C.
(2) The classes X and C consist precisely of the left A-modules M whose X -

reflection η : M → B ⊗AM is bijective, respectively injective.
(3) (Ker (B ⊗A −), C) is a torsion pair.

(4) For every module M ∈ Mod-A there is an exact sequence 0 → M ′ → M
η→

B ⊗AM →M ′′ → 0 where M ′ and M ′′ belong to Ker (B ⊗A −).
(5) If 0 → X → C → Z → 0 is a short exact sequence with X ∈ X and C ∈ C,

then Z ∈ C.
(6) If the weak dimension of BA is at most one, then C ⊆ Ker TorA1 (B,−).

Proof. (1) By Remark 4.13 we know that CogenB+ ⊂ ⊥1B+. By arguments as in
the proof of Proposition 4.9, we see that a left A-module X belongs to λ∗(B-Mod)
if and only if HomA(X,λ+) is bijective. In particular, λ+ : B+ → A+ is a ProdB+-
cover and a CogenB+-cover. By [6, Proposition 3.5] it follows that B+ ⊕ Kerλ+

is a cosilting left A-module.
Moreover, the category Y = CogenB+ ∩ ⊥0Kerλ+ = λ∗(B-Mod) is bire-

flective, and since B+ is a left B-module, the map λ ⊗A B+ is bijective,
which proves that Cokerλ ⊗A B+ = 0 and HomA(B+,Kerλ+) ∼= (Cokerλ ⊗A
B+)+ = 0. Finally, since X is closed under products, C = {M ∈ A-Mod |
M embeds into a module from X} = Cogen (B+).

(2) The statement for X is clear. For the second statement, note that the
injectivity of η : M → B ⊗AM implies M embeds in the module B ⊗AM from X
and therefore lies in C. Conversely, if M ∈ C, there is a monomorphism M → N
with N ∈ X , and the X -reflection η : M → B ⊗AM must be injective.
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(3) The cosilting class C is a torsion-free class. A left A-module M belongs to
the torsion class ⊥0C = ⊥0X if and only if HomA(M,λ∗(N)) ∼= HomB(B⊗AM,N)
vanishes for any B-module N , which means that B ⊗AM = 0.

(4) Consider the canonical exact sequence 0 → M ′ → M → M → 0 with
M ′ ∈ Ker (B ⊗A −) and M ∈ C induced by the torsion pair (Ker (B ⊗A −), C).
Then B ⊗A M ∼= B ⊗A M . Moreover, the X -reflection of the torsion-free module
M gives rise to a short exact sequence 0 → M → B ⊗A M → M ′′ → 0 with
B ⊗AM ′′ = 0, hence M ′′ belongs to Ker (B ⊗A −). The claim is now obtained by
splicing the two short exact sequences.

(5) Consider the commutative diagram

0 −−−−→ X −−−−→ C −−−−→ Z −−−−→ 0

ηX

y ηC

y ηZ

y ∥∥∥
B ⊗A X −−−−→ B ⊗A C −−−−→ B ⊗A Z −−−−→ 0

with exact rows. As X ∈ X and C ∈ C, the map ηX is an isomorphism, and the
map ηC is a monomorphism. Then the Four Lemma shows that ηZ : Z → B ⊗A Z
is a monomorphism, and thus Z ∈ C.

(6) By Example 4.14(3), the ring epimorphism λ : A→ B is homological. Hence

TorA1 (B,N) ∼= TorB1 (B,N) vanishes for all B-modules N , and since TorA1 (B,−) is
left exact, also for all modules in C. �

Theorem 4.16. The map assigning to a ring epimorphism λ : A → B the class
CogenB+ yields a bijection between

(i) epiclasses of ring epimorphisms λ : A→ B such that B+ has a precosilting
copresentation,

(ii) equivalence classes of minimal cosilting modules.

Proof. Proposition 4.15(1) yields a map (i)→(ii). To prove the injectivity, suppose
λi : A → Bi, i = 1, 2, are two ring epimorphisms as in (i) which are mapped to
the same cosilting class. Then, as seen in the proof of Proposition 4.15(1), the
map λ+

i : B+
i → A+ is a CogenB+

i -cover for i = 1, 2. But CogenB+
1 = CogenB+

2 ,
hence the cover property yields B+

1
∼= B+

2 and Kerλ+
1
∼= Kerλ+

2 , and the bireflective
subcategories λ∗(Bi-Mod) = CogenB+

i ∩ ⊥0Kerλ+
i coincide for i = 1, 2, showing

that λ1 and λ2 are in the same epiclass.
Now we show the surjectivity. Take a minimal cosilting module C with an exact

sequence

(4.16.1) 0→ C1 → C0
g−→ A+

such that g is a CogenC-precover, C1 lies in ProdC, Y = CogenC ∩ ⊥0C1 is
a bireflective subcategory of A-Mod, and HomA(C0, C1) = 0. Then there is a
ring epimorphism λ : A → B such that Y = λ∗(B-Mod) = {M ∈ A-Mod |
λ ⊗A M is bijective } = {M ∈ A-Mod | HomA(M,λ+) is bijective }. Notice that
λ+ : B+ → A+ is then a Y-coreflection. On the other hand, the condition
HomA(C0, C1) = 0 implies that C0 ∈ Y, and therefore also g : C0 → A+ is a
Y-coreflection. But then B+ is isomorphic to C0, and in particular B+ has a pre-
cosilting copresentation, cf. [6, page 9]. Now it follows from Proposition 4.15(1)
that B+ ⊕ Kerλ+ is a cosilting module which is clearly equivalent to C. So, the
equivalence class of C lies in the image of our assignment. �

Remark 4.17. Example 4.10 shows that the conditions (i) and (ii) in the definition
of a minimal cosilting module (Definition 4.11) are independent and depend on
the choice of the CogenC-precover. On the other hand, once we know that C is
minimal, we can always guarantee that the CogenC-cover of A+ (which is precisely
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λ+ : B+ → A+ for the associated ring epimorphism λ : A→ B) satisfies (i) and (ii).
Hence we can rephrase the definition as follows: C is a minimal cosilting module if
the CogenC-cover of A+ satisfies (i) and (ii).

Corollary 4.18. Let A be a ring of weak global dimension at most one. The map
assigning to a ring epimorphism λ : A → B the class CogenB+ yields a bijection
between

(i) epiclasses of homological ring epimorphisms,
(ii) equivalence classes of minimal cosilting modules.

Corollary 4.19. Let A be a commutative noetherian ring. The map assigning to
a ring epimorphism λ : A→ B the class CogenB+ yields a bijection between

(i) epiclasses of homological (that is, flat) ring epimorphisms,
(ii) equivalence classes of minimal cosilting modules.

Proof. Recall from [16, Proposition 4.5] that every ring epimorphism A→ B start-

ing in a commutative noetherian ring A and satisfying TorA1 (B,B) = 0 is flat, i.e. B
is a flat A-module. Combining this with Example 4.14 (3) and (4) we infer that a
ring epimorphism A → B is homological if and only if it is flat, if and only if B+

has a precosilting copresentation. �

Definition 4.20. [14] A silting module T over a hereditary ring is said to be
minimal if there is an exact sequence

(4.20.1) A
f−→ T0 → T1 → 0

such that f is an GenT -envelope and T1 lies in AddT .

Corollary 4.21. Let A be a hereditary ring. Then there are bijections between

(i) epiclasses of homological ring epimorphisms;
(ii) equivalence classes of minimal silting modules;
(iii) equivalence classes of minimal cosilting modules.

Proof. It is shown in [14] that the minimal silting (right) modules over a hereditary
ring A correspond bijectively to the epiclasses of homological ring epimorphisms λ :
A→ B. The bijection associates to λ the silting module B⊕Cokerλ. The bijection
(i)↔(iii) is Corollary 4.18. Notice that this correspondence is the composition
of the bijection (i)→(ii) with the map from Corollary 2.17 which associates the
equivalence class of a silting (right) module with the equivalence class of its dual
cosilting module. �

Example 4.22. (1) Every finite dimensional (co)silting module over a finite di-
mensional hereditary algebra A is minimal. Indeed, A has a GenT -envelope for
every finite dimensional silting module T , and every finite dimensional cosilting
module is of cofinite type (e.g. by [11, Corollary 3.8] or by Theorem 3.11), hence
equivalent to T+ for a finite dimensional silting module T .

(2) Let A be a commutative noetherian ring. It is shown in [11] that the cosilting
classes in A-Mod are precisely the torsion-free classes in hereditary torsion pairs,
and they are therefore parametrized by subsets V ⊂ SpecA closed under special-
ization. The subset V is computed as V = Supp T where T = ⊥0C is the torsion
class associated to the cosilting class C.

Recall further from Corollary 4.19 that every minimal cosilting class corresponds
to a flat ring epimorphism A → B, thus the hereditary torsion pair is of the form
(T = Ker (B ⊗A −), C = CogenB+). The subsets V corresponding to flat ring
epimorphisms are determined in [16, Theorem 4.9]; they are characterized by the
property that their complement is coherent in the sense of [41]. We conclude that
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the minimal cosilting classes in A-Mod are parametrized by the specialization-closed
subsets of SpecA having a coherent complement.

(3) If A is a commutative noetherian ring of Krull dimension at most one, the
map assigning to a ring epimorphism λ : A → B the class CogenB+ yields a
bijection between

(i) epiclasses of homological ring epimorphisms,
(ii) equivalence classes of cosilting modules.

The claim is a special case of Corollary 4.19. It follows from (2) by noting that
every subset of SpecA is coherent when A has Krull dimension at most one, see
[41, Corollary 4.3].

(4) Let A be a commutative noetherian local domain. Then the embedding
λ : A ↪→ Q into the quotient field Q is a flat ring epimorphism which corresponds to
the subset V = SpecA\{0} and to the cotilting torsion pair (T = Ker (Q⊗A−), C =
CogenQ+) given by the torsion and torsionfree A-modules, respectively. The dual
tilting class D consists of all divisible modules. Assume that Q is not countably
generated over A. Combining a result of Kaplansky [37] with [10, Theorem 1.1],
we infer that the A-module Q has projective dimension at least two, the tilting
module generating D has not the shape Q ⊕ Cokerλ, and A does not admit a D-
envelope, in contrast with the bijection (i)↔(ii) in Corollary 4.21 for the hereditary
case. Moreover, it follows from Example 4.14(2) that Q cannot have a presilting
presentation.

(5) The bijection (i)↔(ii) in Corollary 4.21 cannot be extended to rings of weak
global dimension at most one. For example, if A is a valuation domain (that is,
a commutative local ring of weak global dimension at most one), then the silting
modules up to equivalence correspond to flat ring epimorphisms, which coincide
with the classical localizations of A, this is a consequence of [11, Theorem 4.7]. On
the other hand, if A is not strongly discrete, meaning that A admits a non-trivial
idempotent ideal, then there are homological ring epimorphisms over A which are
not flat. They correspond to minimal cosilting modules which are not of cofinite
type, see subsection 6.2 for a more general statement. For a simple example of a
valuation domain which is not strongly discrete, see e.g. [22, Example 5.24].

5. TTF triples and ring epimorphisms

We now want to exploit the construction of cosilting modules arising from ring
epimorphisms studied in the previous section. We turn to chains of ring epimor-
phisms and use them to construct TTF triples and cosilting objects in the derived
category.

In subsection 5.1, we provide a construction of a t-structure with definable coaisle
from an increasing chain . . . λn ≤ λn+1 . . . of ring epimorphisms λn : A→ Bn such
that all left A-modules B+

n have a precosilting copresentation, or in other words,
from a chain of nested cosilting classes . . . CogenB+

n ⊆ CogenB+
n+1 . . . We show

that our construction is a natural extension of the construction of compactly gen-
erated t-structures from filtrations by supports discussed in subsection 3.2 for the
commutative noetherian case. Then we determine the conditions ensuring that
our t-structure will be induced by a cosilting object. In subsection 5.2 we special-
ize to rings of weak global dimension at most one. Here, as in the commutative
noetherian case, every t-structure with a definable coaisle encodes a sequence of
nested cosilting classes. We can then characterize the t-structures obtained from
ring epimorphisms by our construction as those where all cosilting classes involved
are minimal. Recall further that over a hereditary ring our construction yields com-
pactly generated, cosuspended TTF triples. In subsection 5.3, we turn to the dual



PARAMETRIZING TORSION PAIRS IN DERIVED CATEGORIES 27

construction and determine the corresponding suspended TTF triples associated
under the bijection Ψ from Theorem 3.1.

5.1. Constructing t-structures from chains of epimorphisms. First of all,
we show how to construct a t-structure with definable coaisle.

Proposition 5.1. Let A be a ring, and let

· · · ⊆ Vn−1 ⊆ Vn ⊆ Vn+1 ⊆ · · ·

be a (not necessarily strictly) increasing Z-indexed sequence of definable classes
closed under extensions in A-Mod, satisfying the following condition: Whenever
f : Vn → Vn+1 is a map with Vn ∈ Vn and Vn+1 ∈ Vn+1 for some n ∈ Z, then
Ker (f) ∈ Vn and Coker(f) ∈ Vn+1. Then there is a t-structure (U ,V) in D(A-Mod)
with definable coaisle

V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z}.

Proof. Invoking [38, Proposition 3.11], [48, Proposition 1.4] and [44, Theorem 4.7],
it is enough to show that V is closed under extensions, cosuspensions, products,
pure subobjects, and pure quotients. Closure under cosuspensions is clear because
Vn ⊆ Vn+1 for all n ∈ Z. Since the cohomology functor Hn : D(A-Mod)→ A-Mod
sends products to products, and pure-exact triangles to pure-exact sequences by
[30, Lemma 2.4], the last three closure properties follow from the definability of Vn.

Finally, we need to show that V is closed under extensions. Let X → Y → Z →
X[1] be a triangle in D(A-Mod) with X,Z ∈ V and consider the induced exact
sequence on cohomology

Hn−1(Z)
f−→ Hn(X)→ Hn(Y )→ Hn(Z)

g−→ Hn+1(X).

By the hypothesis, the cokernel of the map f belongs to Vn, and the kernel of g
belongs to Vn. As Hn(Y ) is an extension of these two, and Vn is closed under
extensions, we conclude that Hn(Y ) ∈ Vn for all n ∈ Z. Therefore, Y ∈ V, as
desired. �

Remark 5.2. • In [60], coaisles of t-structures in the case of hereditary categories
were studied using a notion of reflective co-narrow sequences of subcategories.
These sequences satisfy essentially the same closure condition as the one consid-
ered in Proposition 5.1. In our situation, the reflectivity of the subcategories in the
sequence follows automatically from the assumption of definability.
• It is proved in [20, Proposition 3.7] that if A is a ring of weak global dimension
at most one, then every definable coaisle in D(A-Mod) arises as in Proposition 5.1.

Recall from subsection 4.1 that epimorphisms starting in a ring A form a lattice,
where the partial order is induced by inclusion of the corresponding bireflective
subcategories. In this lattice, we now fix a (not necessarily strictly) increasing
chain

(5.2.1) · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · ·

of ring epimorphisms λn : A → Bn and we assume that the left A-modules B+
n

have a precosilting copresentation. Then TorA1 (Bn, Bn) = 0, cf. Example 4.14(3).
Therefore, the bireflective subcategories corresponding to the λn are all extension
closed by Theorem 4.2.
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For every n ∈ Z we also fix the induced ring epimorphism µn : Bn+1 → Bn given
by the diagram

(5.2.2) A
λn //

λn+1 !!

Bn

Bn+1

µn

<< .

The following observation will be needed later.

Lemma 5.3. If all λn in the chain (5.2.1) are homological ring epimorphisms,
then also all µn are homological, and in D(Mod-A) we have

Cone(µn) ∼= Cone(λn)⊗L
A Bn+1.

Moreover, there is a triangle

Cone(λn+1)→ Cone(λn)→ Cone(µn)→ Cone(λn+1)[1].

Proof. That µn is homological follows easily form the fact that λn+1 being homolog-
ical yields a natural isomorphism Bn⊗L

ABn
∼= Bn⊗L

Bn+1
Bn, see [28, Theorem 4.4].

For the second statement, consider the diagram obtained by applying the functor
−⊗L

ABn+1 on (5.2.2) and use the natural isomorphisms Bn+1⊗L
ABn+1

∼= Bn+1 and
Bn ⊗L

A Bn+1
∼= Bn. The third statement follows from the octahedral axiom. �

Proposition 5.4. (The construction) Denote by Xn the extension-closed bire-
flective subcategories of A-Mod corresponding to the chain (5.2.1), and set

Cn = Cogen (Xn) and Vn = Cn ∩ Xn+1

for all n ∈ Z. Then there is a t-structure (U ,V) in D(A-Mod) with definable coaisle

V = {X ∈ D(A-Mod) | Hn(X) ∈ Vn for all n ∈ Z}.

Proof. We check the conditions of Proposition 5.1 for the sequence (Vn | n ∈ Z).
Clearly Cn ⊆ Cn+1, and therefore we have Vn ⊆ Vn+1 for all n ∈ Z. The classes
Cn are minimal cosilting classes by Theorem 4.16. In particular, Xn and Cn are
definable and extension closed, and so is Vn for any n ∈ Z. Therefore, we are
left with showing that Ker (f) ∈ Vn and Coker(f) ∈ Vn+1 for any homomorphism
f : Vn → Vn+1 with Vi ∈ Vi for i = n, n + 1. Denote K = Ker (f), C = Coker(f),
I = Im f , and consider the exact sequences

0→ K → Vn → I → 0,

and
0→ I → Vn+1 → C → 0.

As Cn is closed under submodules, K ∈ Cn. Moreover, since Vn lies in Xn+1 and
Vn+1 embeds in a module from Xn+1, the module I is the image of a map in
Xn+1 and therefore lies in Xn+1. Applying Proposition 4.15(5) to the second exact
sequence, we infer that C ∈ Cn+1. Then also C ∈ Cn+2, and therefore the natural
map ηC : C → Bn+2 ⊗A C is a monomorphism. As C is an epimorphic image
of Vn+1 ∈ Xn+2, the map ηC is also an epimorphism, and thus finally C ∈ Xn+2,
establishing C ∈ Vn+1. �

Now we restrict to the special case of homological ring epimorphisms λ : A→ Bn
such that the right A-modules Bn have weak dimension at most one.

Proposition 5.5. Assume that all λn in the chain (5.2.1) are homological ring
epimorphisms such that the right A-modules Bn have weak dimension at most one.
Then the definable coaisle V of Proposition 5.4 can be expressed as follows:

V = {X ∈ D(A-Mod) | Cone(λn)⊗L
A X ∈ D≥n for all n ∈ Z}.
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Proof. Recall from Example 4.14(4) that the left A-module B+
n has a precosilting

copresentation for each n ∈ Z, and therefore Proposition 5.4 applies. So, setting
Vn = Cn ∩ Xn+1, we obtain a definable coaisle V = {X ∈ D(A-Mod) | Hn(X) ∈
Vn for all n ∈ Z} in D(A-Mod). We need to prove that V equals Ṽ = {X ∈
D(A-Mod) | Cone(λn) ⊗L

A X ∈ D≥n for all n ∈ Z}. From the long exact sequence
of cohomology induced by the natural map X → Bn ⊗L

A X we infer that

Cone(λn)⊗L
A X ∈ D≥n ⇔ the map H l(X)→ H l(Bn ⊗L

A X)

is an isomorphism for all l < n and a monomorphism for l = n.

Since H l(Bn ⊗L
A X) ∈ Xn, by Theorem 4.4(i) we conclude that if X ∈ Ṽ, then

Hn(X) ∈ Cn ∩ Xn+1 for each n ∈ Z, and thus X ∈ V. Conversely, if X ∈ V,
consider the soft truncation triangle

τ<nX → X → τ≥nX
+−→ .

Since X ∈ V, the truncation τ<nX lies in DXn
(A) = D(Bn-Mod), and thus

Cone(λn) ⊗L
A τ<nX = 0, see Theorem 4.4. Therefore, to show that X ∈ Ṽ, it

is enough to show that Cone(λn)⊗L
A τ
≥nX ∈ D≥n. We truncate further to obtain

a triangle

Hn(X)[−n]→ τ≥nX → τ>nX
+−→ .

Since the right A-module Bn has weak dimension at most one, Cone(λn) can be
replaced by a complex of right flat A-modules concentrated in degrees -1 and 0,
and therefore Cone(λn) ⊗L

A τ>nX ∈ D≥n. Also, Cone(λn) ⊗L
A Hn(X)[−n] ∼=

Cone(Hn(X) → Bn ⊗L
A Hn(X))[−n] ∈ D≥n, because Hn(X) ∈ Cn, and thus

Tor1
A(Bn, H

n(X)) = 0 by Proposition 4.15(6). �

Example 5.6. Let A be a commutative noetherian ring, and let · · · ≤ λn−1 ≤
λn ≤ λn+1 ≤ · · · be an increasing chain of homological ring epimorphisms λn :
A → Bn. Recall from Example 4.22(2) that all Bn are flat A-modules, and that
every λn corresponds to a hereditary torsion pair (Tn = Ker (Bn ⊗A −), Cn =
CogenB+

n ), hence to a minimal cosilting class Cn, and to a specialization-closed
subset Vn ⊂ SpecA which has a coherent complement. We obtain a filtration by
supports Φ : Z −→ P(Spec (A)), n 7→ Vn which gives rise to a t-structure (UΦ,VΦ).
By [4, Theorem 3.11]

VΦ = {X ∈ D(A-Mod) | RΓVn
X ∈ D>n for all n ∈ Z}

where RΓVn is the right derived functor of the torsion radical ΓVn of the torsion
class Tn. In the notation of Theorem 4.3, we have that RΓVn

= j!j
∗ = j!(− ⊗L

A

Cone(λn)[−1], see [16, Remark 3.3]. Hence we deduce that

VΦ = {X ∈ D(A-Mod) | Cone(λn)⊗L
A X ∈ D≥n for all n ∈ Z},

that is, the t-structure associated to Φ coincides with the t-structure constructed
in Proposition 5.4.

In particular, it follows from Example 4.22(3) that all compactly generated t-
structures over a commutative ring of Krull dimension at most one arise in this
way.

Next, we look for conditions ensuring that the t-structure in Proposition 5.4 is
non-degenerate and is thus induced by a cosilting object (cf. [43, Theorem 4.6]).

Proposition 5.7. Assume that all λn in the chain (5.2.1) are homological ring
epimorphisms such that the right A-modules Bn have weak dimension at most one.
Denote by Xn the extension closed bireflective subcategories of A-Mod, and by Ln =
Ker (Bn ⊗L

A −) the smashing subcategories of D(A-Mod) associated with λn via
Theorems 4.2 and 4.3. Then the t-structure (U ,V) constructed in Proposition 5.4
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is induced by a cosilting object in D(A-Mod) if and only if the following conditions
hold true.

(5.7.1)
⋂
n∈Z
Xn = 0 and

⋂
n∈Z
Ln = 0.

In this case, the t-structure (U ,V) is induced by the (pure-injective) cosilting object

C =
∏
n∈Z

RHomAop(Bn+1,Cone(λn)+)[−n] ∼=
∏
n∈Z

Cone(µn)+[−n].

Proof. (1) We first prove that the conditions (5.7.1) are necessary. If our t-structure
(U ,V) is induced by a cosilting object, then it must be non-degenerate. Recall that
Xn ⊆ Cn ∩ Xn+1 = Vn for all n ∈ Z. Then we have a chain of inclusions

· · · ⊆ Vn−1 ⊆ Xn ⊆ Vn ⊆ Xn+1 ⊆ · · ·
It follows that

⋂
n∈Z V[n] = 0 if and only if

⋂
n∈Z Vn = 0 if and only if

⋂
n∈Z Xn = 0.

For the rest, it is enough to show that
⋂
n∈Z U [n] = 0 implies that

⋂
n∈Z Ln = 0.

Recall again from Theorem 4.4 that Ln = DEn(A), where En = Ker (Bn ⊗L
A

−)∩A-Mod. Therefore it is enough to show that
⋂
n∈Z En = 0. We proceed by

proving that En ⊆ U [n− 1] for all n ∈ Z. Let M ∈ En and consider the approxima-
tion triangle with respect to (U ,V):

U →M [−n]→ V → U [1].

Denote Ln = Cone(λn). Since M [−n] ∈ Ln, we know from Theorem 4.3 that
M [−n] ∼= Ln[−1]⊗L

AM [−n]. Applying Ln[−1]⊗L
A − we thus obtain a triangle

Ln[−1]⊗L
A U →M [−n]→ Ln[−1]⊗L

A V → Ln[−1]⊗L
A U [1].

By Proposition 5.5 we get that Ln[−1] ⊗L
A V ∈ D>n. As M [−n] ∈ D≤n, the

map M [−n] → Ln[−1] ⊗L
A V from the latter triangle is zero, and thus M [−n] is

a direct summand of Ln[−1] ⊗L
A U . Since Ln[−1] ∈ D≤1, Ln[−1] ⊗L

A U belongs
to U [−1] (cf. [35, Proposition 2.3]). In conclusion, M is a direct summand of
Ln[n− 1]⊗L

A U ∈ U [n− 1].
(2) We now assume that the conditions (5.7.1) hold true, and prove that C is a

cosilting object inducing our t-structure. It is enough to show that C ∈ V, that C
is a cogenerator of D(A-Mod), and that ⊥>0C = V (cf. [51, Proposition 4.13]).

Set Cn = RHomAop(Bn+1,Cone(λn)+) so that C =
∏
n∈Z Cn[−n]. By

Lemma 2.1 we can rewrite Cn as

Cn ∼= (Cone(λn)⊗L
A Bn+1)+ ∼= Cone(µn)+,

where the second isomorphism follows from Lemma 5.3. Consider the triangle

B+
n+1[−n− 1]→ Cn[−n]→ B+

n [−n]→ B+
n+1[−n].

Since B+
n ∈ Xn ⊆ Vn and B+

n+1 ∈ Xn+1 ⊆ Vn+1, we see that Cn[−n] ∈ V. There-
fore, C ∈ V.

Notice that for any object X ∈ D(A-Mod), we have the following equivalence:

X ∈ ⊥ZCn ⇔ µn ⊗L
A X is an isomorphism in D(A-Mod).

For each n ∈ Z, consider the morphism of triangles

(5.7.2)

X −−−−→ Bn+1 ⊗L
A X −−−−→ Yn+1 −−−−→ X[1]∥∥∥ yµn⊗L

AX

yαn

∥∥∥
X −−−−→ Bn ⊗L

A X −−−−→ Yn −−−−→ X[1]

induced as in Theorem 4.3 by the homological ring epimorphisms λn, where Yn ∈ Ln
for all n ∈ Z. Assume that X ∈ ⊥Z

∏
n≥l Cn for some l ∈ Z. Then for each n ≥ l

the vertical maps of (5.7.2) are isomorphisms. As a consequence, Yl ∼= Yn ∈ Ln for
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each n ≥ l, and therefore Yl ∈
⋂
n≥l Ln. But

⋂
n≥l Ln = 0 using that Ln ⊇ Ln+1

for all n ∈ Z. Thus we conclude that X ∼= Bl ⊗L
A X ∈ D(Bl-Mod) = DXl

(A).
Now assume that X ∈ ⊥ZC. Then, by the previous computation, the cohomolo-

gies of X belong to
⋂
l∈Z Xl = 0, and we conclude that X = 0. Therefore, C is a

cogenerator in D(A-Mod).
Finally, let us prove that ⊥>0C = V. Using Lemma 2.1, we compute:

X ∈ ⊥>0C ⇔ RHomAop(X,C) ∈ D≤0 ⇔ Cone(µn)⊗L
A X ∈ D≥n for all n ∈ Z

⇔ for all n ∈ Z : H l(µn ⊗L
A X) is an isomorphism for all l < n

and Hn(µn ⊗L
A X) is a monomorphism.

Given X ∈ ⊥>0C, consider again the morphism of triangles (5.7.2) together with
the induced map on long exact sequences of cohomology. For any l ∈ Z, using
the Four Lemma twice, we see that H l(αn) is an isomorphism for all l < n and
a monomorphism for l = n. In particular, it follows that Hk(Yl) ∼= Hk(Yn) when
k < l. By Theorem 4.4, the smashing subcategory Ln is determined on cohomology,
and thus the soft truncation τ<l(Yl) ∼= τ<l(Yn) belongs to Ln for all l ≤ n. By
our hypothesis, this implies τ<l(Yl) = 0, and so Hk(X) → Hk(Bl ⊗L

A X) ∈ Xl is
an isomorphism for all k < l. Furthermore, the map Hk(µk ⊗L

A X) : Hk(X) ∼=
Hk(Bk+1 ⊗L

AX)→ Hk(Bk ⊗L
AX) ∈ Xk is a monomorphism. Together, this proves

that Hk(X) ∈ Ck ∩ Xk+1 for all k ∈ Z, and therefore X ∈ V.
Conversely, let X ∈ V = {X ∈ D(A-Mod) | Cone(λn) ⊗L

A X ∈ D≥n for all n ∈
Z}. Then the triangle from Lemma 5.3 shows that Cone(µn) is an extension of
Cone(λn) and Cone(λn+1)[1], and therefore Cone(µn)⊗L

AX belongs to D≥n, show-
ing that X ∈ ⊥>0C. �

5.2. Minimal cosuspended TTF triples. The goal of this subsection is to de-
termine the t-structures in D(A-Mod) that arise from chains of homological ring
epimorphisms in the case when the weak global dimension of the ring A is at most
one.

We say that a subcategory C of D(A-Mod) is determined on cohomology if the
following equivalence holds for any object X ∈ D(A-Mod):

X ∈ C ⇔ Hn(X)[−n] ∈ C for all n ∈ Z.
For example, the definable coaisle obtained in Proposition 5.4 is determined on

cohomology, by construction. Moreover, all aisles and coaisles of t-structures over
hereditary rings are determined on cohomology, cf. subsection 3.3. For rings of weak
global dimension at most one, it was proved in [20, Theorem 3.4] that all definable
coaisles are determined on cohomology. We are now going to establish the same
result for the corresponding aisles. We will also see that in such case the t-structure
determines a sequence of module-theoretic cosilting classes. Before that, we need
the following simple but very useful Lemma.

Lemma 5.8. Let A be a k-algebra of weak global dimension at most one. For any
complex of right A-modules X, any complex of left modules Y , and any n ∈ Z there
is a short exact sequence

0→
⊕
p+q=n

Hp(X)⊗AHq(Y )→ Hn(X⊗L
AY )→

⊕
p+q=n+1

TorA1 (Hp(X), Hq(Y ))→ 0

in Mod-k.

Proof. This follows directly from an application of the Künneth formula, see the
proof of [22, Proposition 3.6]. �

Given a t-structure (U ,V), we denote again Un = {Hn(X) | X ∈ U} and Vn =
{Hn(X) | X ∈ V}.
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Theorem 5.9. Let A be a ring of weak global dimension at most one, and let (U ,V)
be a t-structure in D(A-Mod) such that V is definable. Then both the aisle U and the
coaisle V are determined on cohomology. Furthermore, the class Cn = Cogen (Vn)
is equal to U⊥0

n and it is a cosilting class in A-Mod for all n ∈ Z.

Proof. The coaisle V is determined on cohomology by [20, Theorem 3.4].
By Proposition 2.10, the t-structure (U ,V) is cogenerated by the pure-injective

objects of V. Let X ∈ V be pure-injective. Since V is definable, we have X++ ∈ V
(see Remark 2.4). Furthermore, X is a direct summand of X++ by Corollary 2.8.
In conclusion, the t-structure (U ,V) is cogenerated by V++.

Using the derived Hom-⊗ adjunction, we have for any Y ∈ D(A-Mod):

Y ∈ U ⇔ RHomAop(Y,V++) ∈ D>0 ⇔ (V+ ⊗L
A Y ) ∈ D<0.

Now it follows from Lemma 5.8 that the condition (V+⊗L
A Y ) ∈ D<0 depends only

on the cohomology of Y . More precisely, for any X ∈ V+ and n ≥ 0 we have that

Hn(X ⊗L
A Y ) = 0⇔⊕

p+q=n

Hp(X)⊗A Hq(Y ) = 0 and
⊕

p+q=n+1

TorA1 (Hp(X), Hq(Y )) = 0⇔

Hn(X ⊗L
A (
⊕
k∈Z

Hk(Y )[−k])) = 0,

where both equivalences follow from Lemma 5.8, using that the objects Y and⊕
k∈ZH

k(Y )[−k] have indistinguishable cohomology. We conclude that Y ∈ U if

and only if
⊕

k∈ZH
k(Y )[−k] ∈ U . Since U is closed under direct summands and

coproducts, U is determined on cohomology. In other words, U = {Y ∈ D(A-Mod) |
Hn(Y ) ∈ Un for all n ∈ Z}.

We claim that Cn = U⊥0
n . First, since Un[−n] ⊆ U and Vn[−n] ⊆ V, we have that

Vn ⊆ U⊥0
n , and therefore Cn = Cogen (Vn) ⊆ U⊥0

n . For the converse implication,
let M ∈ U⊥0

n and consider the following approximation triangle with respect to the
t-structure (U ,V):

U →M [−n]→ V → U [1].

Passing to cohomology, we obtain an exact sequence

Hn(U)→M → Hn(V ).

Since Hn(U) ∈ Un, the map Hn(U) → M above is zero, and therefore M embeds
into Hn(V ). Since Hn(V ) ∈ Vn, we conclude that M ∈ Cn.

In particular, we proved that the subcategory Cn = U⊥0
n is closed under exten-

sions in A-Mod. Since Cn = Cogen (Vn) is also a definable subcategory of A-Mod
by [50, Proposition 3.4.15], it is a definable torsion-free class, and thus a cosilting
class in A-Mod. �

Recall from Theorem 2.12(1) that a t-structure (U ,V) as in Theorem 5.9 gives
rise to a cosuspended TTF triple (U ,V,W). Moreover, both the aisle U and the
coaisle V are determined by the cohomological projections Un,Vn ⊆ A-Mod, and
the classes Vn form a chain

· · · ⊆ Vn−1 ⊆ Vn ⊆ Vn+1 ⊆ · · ·
satisfying the conditions of Proposition 5.1. Fix the notation Cn = Cogen (Vn) for
all n ∈ Z.

Lemma 5.10. In the situation of Theorem 5.9, assume that there is l ∈ Z such that
the cosilting class Cn is minimal for all n > l. For n > l denote by λn : A → Bn
the homological ring epimorphism and by Xn the extension closed bireflective sub-
category of A-Mod associated with Cn via Corollary 4.18 and Theorem 4.2. Then:
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(i) Vn = Cn ∩ Xn+1 for any n ≥ l.
(ii) Xn ⊆ Xn+1 for any n > l.

Proof. Fix n ≥ l, and recall from Proposition 4.15(2),(3) that Cn+1 = CogenXn+1

is a torsion-free class consisting of the left A-modules M whose Xn+1-reflection
M → Bn+1 ⊗AM is injective.

(i) Pick M ∈ Vn. Obviously, M lies in Cn = Cogen (Vn) ⊆ Cn+1, hence the map
M → Bn+1 ⊗AM is injective. We claim that it is even bijective, which will yield
M ∈ Xn+1. Notice that Bn+1 ⊗A M lies in Xn+1 ⊆ Cn+1 = Cogen (Vn+1). Since
Vn+1 is closed under products, there is a monomorphism ι : Bn+1 ⊗AM → N for
some N ∈ Vn+1, and we have a commutative diagram with exact rows

0 −−−−→ M −−−−→ Bn+1 ⊗AM −−−−→ M ′′ −−−−→ 0∥∥∥ yι y
0 −−−−→ M −−−−→ N −−−−→ Y −−−−→ 0

Because M ∈ Vn and N ∈ Vn+1, the cokernel Y belongs to Vn+1 ⊆ Cn+1. On
the other hand, we know from Proposition 4.15(4) that M ′′ belongs to the torsion
class Ker (Bn+1 ⊗A −) = ⊥0Cn+1. Since the rightmost vertical map M ′′ → Y
is necessarily injective, the only possibility is that M ′′ = 0. We showed that
Vn ⊆ Cn ∩ Xn+1.

For the converse inclusion, assume M ∈ Cn∩Xn+1 and let us show that M ∈ Vn.
Consider the approximation triangle of M [−n] with respect to (U ,V),

U →M [−n]→ V → U [1],

yielding an exact sequence on cohomology:

Hn(U)→M → Hn(V )→ Hn+1(U)→ 0.

Since M ∈ Cn, and Cn = U⊥0
n by Theorem 5.9, the leftmost map Hn(U) → M is

zero. Therefore, we actually have a short exact sequence of form

0→M → Hn(V )→ Hn+1(U)→ 0.

We know that Hn(V ) ∈ Vn ⊆ Cn ⊆ Cn+1, and that M ∈ Xn+1. It follows from

Proposition 4.15(5) that Hn+1(U) ∈ Cn+1. But Hn+1(U) ∈ Un+1, and Cn+1 = U⊥0
n+1

by Theorem 5.9 again, resulting in Hn+1(U) = 0. Therefore, M ∼= Hn(V ) ∈ Vn, as
desired.

(ii) Assume now n > l and pick a module M ∈ Xn. From part (i) we know
that Vn = Cn ∩ Xn+1, and therefore Cn = Cogen (Vn) = Cogen (Cn ∩ Xn+1). As
M ∈ Xn ⊆ Cn, there is a monomorphism ι : M → Y to a module Y ∈ Cn ∩ Xn+1.
Denote X = Coker(ι) and consider the following commutative diagram, where the
vertical maps are the natural morphisms:

0 −−→ M −−→ Y −−→ X −−→ 0y y y∼= y
TorA1 (Bn+1, X) −−→ Bn+1 ⊗AM −−→ Bn+1 ⊗A Y −−→ Bn+1 ⊗A X −−→ 0

Since M ∈ Xn and Y ∈ Cn, we infer from Proposition 4.15(5),(6) that X ∈ Cn ⊆
Cn+1 ⊆ Ker TorA1 (Bn+1,−), so TorA1 (Bn+1, X) = 0. The fact that X ∈ Cn+1 also
implies that the rightmost vertical map of the commutative diagram is injective.
Then the Snake Lemma shows that the Xn+1-reflection M → Bn+1⊗AM is surjec-
tive. Since it is clearly also injective, we can finally conclude that M ∈ Xn+1. �

Definition 5.11. Let A be a ring of weak global dimension at most one. A cosus-
pended TTF triple (U ,V,W) such that V is a definable subcategory of D(A-Mod) is
minimal if Cn = CogenVn is a minimal cosilting class for all n ∈ Z. A pure-injective
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cosilting object C is minimal if so is the corresponding TTF triple (U ,V,W) with
V = ⊥>0C.

Furthermore, we say that two chains of homological epimorphisms over a ring
A are equivalent if they give rise to the same chain of bireflective subcategories in
A-Mod.

Theorem 5.12. If A is a ring of weak global dimension at most one, there is a
bijection between

(i) equivalence classes of chains · · ·λn ≤ λn+1 · · · of homological ring epimor-
phisms;

(ii) minimal cosuspended TTF triples in D(A-Mod)

which restricts to a bijection between

(i’) equivalence classes of chains · · ·λn ≤ λn+1 · · · of homological ring epimor-
phisms satisfying condition (5.7.1);

(ii’) equivalence classes of minimal cosilting objects in D(A-Mod).

Proof. Let us start by showing that the construction of Proposition 5.4 induces a
well-defined map (i)→(ii). First, by Theorem 2.12(1) the constructed t-structure
(U ,V) extends to a cosuspended TTF triple. Let Xn be the bireflective subcategory
corresponding to λn via Theorem 4.2. Recall that Vn = Cogen (Xn) ∩ Xn+1. Since
(i) ensures Xn ⊆ Xn+1 for each n ∈ Z, we obtain that Cogen (Vn) = Cogen (Xn) is
the minimal cosilting class corresponding to λn via Corollary 4.18, see also Propo-
sition 4.15. Therefore, the constructed TTF triple is minimal. Note that the corre-
spondence of Corollary 4.18 also ensures that the assignment (i)→(ii) is injective.

By Theorem 5.9 and Definition 5.11, any minimal cosuspended TTF triple
(U ,V,W) determines a sequence of minimal cosilting classes (Cn = CogenVn |
n ∈ Z) and thus by Corollary 4.18, also a collection of homological ring epimor-
phisms (λn | n ∈ Z). By Lemma 5.10(ii), the induced bireflective subcategories
(Xn | n ∈ Z) form an increasing chain, and therefore λn can be chosen to form a
chain as in (i). Finally, Lemma 5.10(i) yields Vn = Cogen (Xn)∩Xn+1, showing that
(U ,V) coincides with the t-structure constructed from the chain via Proposition 5.4.
This proves the surjectivity of the assignment (i)→(ii).

The second statement follows from Proposition 5.7. �

5.3. Constructing suspended TTF triples. We have seen that every chain of
homological epimorphisms starting in a hereditary ring A gives rise to a homo-
topically smashing, and therefore compactly generated cosuspended TTF triple in
D(A-Mod). We now want to determine the suspended TTF triple in D(Mod-A)
which is associated under the bijection Ψ from Theorem 3.1.

To this end, we now switch to right modules. Let A be an arbitrary ring. This
time we fix a (not necessarily strictly) increasing chain

(5.12.1) · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · ·

of ring epimorphisms λn : A→ Bn such that the right A-modules Bn have a presilt-
ing presentation. Then the left A-module B+

n has a precosilting copresentation, and

TorA1 (Bn, Bn) = 0 by Example 4.14(2) and (3), so the corresponding bireflective
subcategories X ′n of Mod-A are all extension closed. For every n ∈ Z we also fix the
induced ring epimorphism µn given by the diagram (5.2.2), and the subcategory
Dn = Gen (X ′n) of Mod-A, which is the silting class induced by the silting right
A-module Bn ⊕ Coker(λn) from Example 4.14(2). In particular, Dn is a definable
subcategory of Mod-A. We start with a dual version of Proposition 5.4.

Proposition 5.13. (The dual construction) In the situation above, denote by
X ′n the extension closed bireflective subcategories of Mod-A corresponding to the
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chain (5.12.1), and set

Dn = Gen (X ′n), V ′n = Dn ∩ X ′n+1

for all n ∈ Z. Then there is a t-structure (V ′,W ′) in D(Mod-A) with definable aisle

V ′ = {X ∈ D(Mod-A) | H−n(X) ∈ V ′n for all n ∈ Z}.

Proof. One can prove that V ′ is a definable subcategory of D(Mod-A) closed under
suspension and extension by dualizing the proofs of Propositions 5.1 and 5.4. In
fact, the definability of V ′ follows by precisely the same argument as in the proof
of Proposition 5.1. Since Xn and X ′n, as well as Cn and Dn, are dual definable
subcategories of A-Mod and Mod-A, respectively, it follows that V and V ′ are dual
definable subcategories of D(A-Mod) and D(Mod-A), respectively. The closure
of V ′ under suspensions and extensions then follows immediately by applying the
duality functor. Now [44, Theorem 4.7 and Proposition 5.10] show that V ′ is indeed
an aisle of a t-structure. �

In analogy to our approach on the cosilting side, we now restrict to the case of
homological ring epimorphisms λn : A → Bn such that the right A-modules Bn
have projective dimension at most one.

Proposition 5.14. Assume that all λn in the chain (5.12.1) are homological ring
epimorphisms such that the right A-modules Bn have projective dimension at most
one. Then the definable aisle V ′ of Proposition 5.13 can be expressed as follows:

V ′ = {X ∈ D(Mod-A) | RHomA(Cone(λn), X) ∈ D≤−n for all n ∈ Z}.

Proof. Recall from Example 4.14(5) that the right A-module Bn has a presilting
presentation, therefore Proposition 5.13 applies. We adopt the same notation and
set V ′n = Dn∩X ′n+1 for each n ∈ Z. Let us start with an object X ∈ D(Mod-A) such
that H−n(X) ∈ V ′n for all n ∈ Z. We have to show that RHomA(Cone(λn), X) ∈
D≤−n for all n ∈ Z.

By Theorems 4.3 and 4.4, there is a sequence of stable TTF triples

(Ker (−⊗L
A Bn),Bn = Im (λn)∗,Kn)

in D(Mod-A), where Bn = DX ′n(A) and Ln = Cone(λn) ∈ Ker (− ⊗L
A Bn) for

all n ∈ Z. Since all cohomologies of (τ>−n(X)) lie in X ′n, we have τ>−n(X) ∈
Bn, and therefore RHomA(Ln, τ

>−n(X)) = 0. On the other hand, since Bn is
a right A-module of projective dimension at most one, Ln can be replaced by a
complex of projective A-modules concentrated in degrees −1 and 0. Therefore,
RHomA(Ln, τ

<−n(X)) ∈ D≤−n.
It remains to show that RHomA(Ln, H

−n(X)[n]) ∈ D≤−n. We show more:
RHomA(Ln,M) ∈ D≤0 for any M ∈ Dn. In fact, since X ′n ⊆ Bn, we have
RHomA(Ln, X) = 0 for all X ∈ X ′n, and this implies the statement, because
M ∈ GenX ′n and Ln can be replaced by a complex of projectives concentrated in
degrees -1 and 0.

For the converse inclusion, let X ∈ D(Mod-A) be such that RHomA(Ln, X) ∈
D≤−n for all n ∈ Z. By Theorem 4.3, there is for each m ∈ Z a triangle of form

RHomA(Bm, X)→ X → RHomA(Lm[−1], X)→ RHomA(Bm, X)[1],

inducing for any n ∈ Z an exact sequence

H−nRHomA(Lm, X)→ H−nRHomA(Bm, X)→

→ H−n(X)→ H−n+1RHomA(Lm, X).

Using the assumption on X, we see from the last exact sequence that the map
H−nRHomA(Bm, X) → H−n(X) is surjective if m = n, and it is an isomorphism
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if m > n. Since H−nRHomA(Bm, X) ∈ X ′m by Theorem 4.3, we conclude that
H−n(X) ∈ Dn ∩ X ′n+1, showing that X ∈ V ′. �

Proposition 5.15. Assume that all λn in the chain (5.12.1) are homological ring
epimorphisms such that the right A-modules Bn have projective dimension at most
one. Denote by X ′n the extension closed bireflective subcategories of Mod-A and by
Kn = Ker RHomA(Bn,−) the triangulated subcategories of D(Mod-A) associated
with λn via Theorems 4.2 and 4.4. Then the t-structure (V ′,W ′) is induced by a
silting object if and only if the conditions

(5.15.1)
⋂
n∈Z
X ′n = 0 and

⋂
n∈Z
Kn = 0

hold true. In this case, the t-structure (V ′,W ′) is induced by the silting object

T =
⊕
n∈Z

Cone(µn)[n].

Proof. (1) We start by proving that the conditions (5.15.1) hold whenever the t-
structure (V ′,W ′) is non-degenerate. Recall that X ′n ⊆ Dn ∩ X ′n+1 = V ′n. Since
there is clearly a chain

· · · ⊆ X ′n ⊆ V ′n ⊆ X ′n+1 ⊆ · · · ,
we have that

⋂
n∈Z X ′n = 0 if and only if

⋂
n∈Z V ′n = 0 if and only if

⋂
n∈Z V ′[n] = 0.

It remains to check that
⋂
n∈ZKn = 0 provided that

⋂
n∈ZW ′[n] = 0. Since Kn

is determined on cohomology by Theorem 4.4(ii), it is enough to show that for
any stalk complex M such that M ∈ Kn we have M ∈ W ′[−n + 1]. Consider the
truncation triangle of M [n] with respect to the t-structure (V ′,W ′):

V ′ →M [n]→W ′ → V ′[1].

Denote Ln = Cone(λn). Since M [n] ∈ Kn, Theorem 4.3 yields M [n] ∼=
RHomA(Ln[−1],M [n]), and we have a triangle

RHomA(Ln[−1], V ′)
g−→M [n]→ RHomA(Ln[−1],W ′)→ RHomA(Ln[−1], V ′)[1].

By Proposition 5.14, RHomA(Ln[−1], V ′) ∈ D<−n, and therefore the map g
in the latter triangle is zero. It follows that M [n] is a direct summand in
RHomA(Ln[−1],W ′). Because Ln[−1] ∈ D≤1, the complex RHomA(Ln[−1],W ′)
belongs to W ′[1] (cf. [35, Proposition 2.3]), and so M ∈ W ′[−n+ 1].

(2) Now we assume the conditions (5.15.1) and show that T =
⊕

n∈Z Cone(µn)[n]
is a silting object inducing the t-structure (V ′,W ′). This is done similarly as in
Proposition 5.7. Indeed, it is enough to show that T ∈ V ′, that T is a generator
in D(Mod-A), and that T⊥>0 = V ′. Since Cone(µn) is an extension of Bn and
Bn+1[1] for each n ∈ Z, we infer that T ∈ V ′. Recall from Theorem 4.3 that for
every X ∈ D(Mod-A) there is a triangle

Zn → RHomA(Bn, X)→ X → Zn[1],

where Zn = RHomA(Ln, X) ∈ Kn, and RHomA(Bn, X) ∈ Bn = DX ′n(A). For all
n ∈ Z, the map RHomA(µn, X) induces a morphism of triangles:

(5.15.2)

Zn −−−−→ RHomA(Bn, X) −−−−→ X −−−−→ Zn[1]

ζn

y RHomA(µn,X)

y ∥∥∥ ζn[1]

y
Zn+1 −−−−→ RHomA(Bn+1, X) −−−−→ X −−−−→ Zn+1

Assume first that X ∈ T⊥Z . Then RHomA(Cone(µn), X) = 0, implying that
RHomA(µn, X) is a quasi-isomorphism for all n ∈ Z, and thus so is ζn for all
n ∈ Z. It follows that Zn ∼= Zn+1 in D(Mod-A) for all n ∈ Z, and therefore
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Zn ∈
⋂
n∈ZKn = 0. Then X ∼= RHomA(Bn, X) ∈ Bn for all n ∈ Z, and thus

X = 0. We proved that T is a generator of D(Mod-A).
It remains to show that T⊥>0 = V ′. Since V ′ = {X ∈ D(Mod-A) |

RHomA(Ln, X) ∈ D≤−n for all n ∈ Z} by Proposition 5.14, the inclusion V ′ ⊆
T⊥>0 follows by observing that Cone(µn) is an extension of Ln by Ln+1[1],
cf. Lemma 5.3. To prove the converse, pick X ∈ T⊥>0 . From the long exact
sequence of cohomologies we infer that H−l(RHomA(µn, X)) is an isomorphism
whenever l < n, and it is an epimorphism for l = n. By the Four Lemma, the map
H−l(ζn) is an isomorphism whenever l < n, and it is an epimorphism for l = n.
Then τ>−l(Zl) ∼= τ>−l(Zn) for all l < n. By Theorem 4.4, the subcategory Kn is
determined on cohomology for any n ∈ Z. Hence τ>−l(Zl) ∈

⋂
n∈ZKn = 0 for each

l ∈ Z. This establishes the isomorphisms H−n(RHomA(Bn+1, X)) ∼= H−n(X),
showing that H−n(X) ∈ X ′n+1. Furthermore, the map H−n(RHomA(µn, X)) :
H−n(RHomA(Bn, X))→ H−n(RHomA(Bn+1, X)) ∼= H−n(X) is an epimorphism,
and therefore H−n(X) ∈ Gen (X ′n) = Dn. We proved that X ∈ V ′. �

Proposition 5.16. Let A be a right hereditary ring, and let · · · ≤ λn−1 ≤ λn ≤
λn+1 ≤ · · · be an increasing chain of homological ring epimorphisms λn : A→ Bn.
Then the t-structure (V ′,W ′) with definable aisle V ′ constructed in Proposition 5.13
can be completed to a compactly generated suspended TTF triple (U ′,V ′,W ′) in
D(Mod-A), which corresponds under the map Ψ of Theorem 3.1 to the compactly
generated TTF triple (U ,V,W) in D(A-Mod) given by Proposition 5.4.

Proof. To prove the existence of a compactly generated suspended TTF triple of the
stated shape, it is enough to exhibit a set S of compact objects of D(Mod-A) such
that V ′ = S⊥0 . Let (Mn | n ∈ Z) be the sequence of wide subcategories of mod-A
corresponding to the homological epimorphisms λn : A → Bn via Theorem 4.6. It
is proved in [14, Corollary 5.15 and Proposition 5.2] that Dn = Ker Ext1

A(Mn,−)∩
Mod-A/In where In = Ker (λn) is an idempotent two-sided ideal of A. Since A
is right hereditary, In is a projective right A-module and thus, due to a theorem
of Kaplansky [45, (2.24)], In admits a direct sum decomposition In =

⊕
α∈κn

Iαn ,
where κn is a cardinal and Iαn is a finitely generated projective right A-module for
each α ∈ κn, n ∈ Z. We consider the subset of Dc(Mod-A)

S =
⋃
n∈Z

(Mn+1 ∪ {Iαn | α ∈ κn})[n],

and claim that an object X ∈ D(Mod-A) satisfies HomD(Mod-A)(S, X) = 0 if and
only if X ∈ V ′. Since A is right hereditary, and both V ′ and Ker HomD(Mod-A)(S,−)
are closed under direct sums and summands, it is enough to check this when X =
M [n] is a stalk complex given by some M ∈ Mod-A. Since In is an idempotent
ideal, clearly Mod-A/In = I⊥0

n ⊆ Mod-A. Then we compute, using again the right
heredity of A, and the fact that Iαn is projective for each α ∈ κn:

M [n] ∈ S⊥0 ⇔M ∈M⊥1
n ∩M

⊥0
n+1 ∩ I⊥0

n .

Since Mn+1 ⊆ Mn, this is further equivalent to M satisfying M ∈ M⊥0,1

n+1 and

M ∈M⊥1
n ∩ I⊥0

n . But M⊥0,1

n+1 = X ′n+1 and M⊥1
n ∩ I⊥0

n = Dn. Therefore,

M [n] ∈ S⊥0 ⇔M ∈ Dn ∩ X ′n+1 ⇔M [n] ∈ V ′,

as desired.
The map Ψ from Theorem 3.1 now provides a compactly generated TTF triple

(U ,V,W) in D(A-Mod), where V ′ and V are dual definable subcategories. In other
words, V is uniquely determined by the property that a complex X ∈ D(A-Mod)
lies in V if and only if X+ lies in V ′, cf. Lemma 2.3 and Remark 2.4. But then, by



38 LIDIA ANGELERI HÜGEL AND MICHAL HRBEK

construction, V has to be the definable coaisle obtained from the chain · · · ≤ λn ≤
λn+1 ≤ · · · as in Proposition 5.5. �

6. Classification results

We finish this note by discussing our results for specific classes of rings, elaborat-
ing on the interplay between TTF triples, (co)silting objects, and ring epimorphisms
in these special cases.

6.1. Commutative noetherian rings of Krull dimension at most one. Let
A be a commutative noetherian ring. Recall from Corollary 4.19 that the flatness
of a ring epimorphism is determined by the closure properties of the correspond-
ing bireflective category, and consequently the collection of epiclasses of flat ring
epimorphisms forms a complete lattice as in the discussion after Theorem 4.2.

Theorem 6.1. Let A be a commutative noetherian ring of Krull dimension at most
one. Then there are bijections between the following collections:

(i) equivalence classes of chains · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · in the lattice
of flat ring epimorphisms over A such that the meet

∧
n∈Z λn and the join∨

n∈Z λn equal the trivial homomorphism 0A : A → 0 and the identity
idA : A→ A, respectively;

(ii) equivalence classes of silting objects T of finite type in D(Mod-A);
(iii) equivalence classes of pure-injective cosilting objects C in D(Mod-A).

The representatives of the equivalence classes of objects in (ii) and (iii) are ob-
tained from (i) by the constructions of Proposition 5.15 and Proposition 5.7, re-
spectively.

Proof. By Example 5.6, the Krull dimension of A being at most one implies that
the assignment

(λ : A→ B) 7→ V = {p ∈ Spec (A) | A/p⊗A B = 0}

yields a bijection between the epiclasses of flat ring epimorphisms over A and the
specialization closed subsets of Spec (A). Recall that under this identification, V =
Supp T where T = Ker (B ⊗A −) is the hereditary torsion class induced by the
flat ring epimorphism λ. It follows that there is an anti-isomorphism of complete
lattices between the lattice of epiclasses of flat ring epimorphisms and the set-
theoretic lattice of specialization closed subsets of Spec (A). Therefore, we naturally
obtain a bijection between the equivalence classes of chains of flat ring epimorphisms
satisfying the conditions of (i), and the filtrations by supports on Spec (A) satisfying
the conditions in Theorem 3.8(iii). In this way, we have established the bijections
(i) ↔ (ii)↔ (iii).

Since the ring epimorphism λn : A → Bn is flat for all n ∈ Z, Proposition 5.7
applies and yields the cosilting object C. Finally, since the Krull dimension of
A is at most one, for any n ∈ Z the projective dimension of the flat module Bn
over A is at most one by [52, Corollaire 3.2.7], and therefore the assumptions of
Proposition 5.15 are satisfied as well, yielding the silting object T . �

Example 6.2. We compute explicitly the silting and cosilting objects of Theo-
rem 6.1 in the case of the ring of integers Z. Let · · · ≤ λn−1 ≤ λn ≤ λn+1 ≤ · · · be
a chain of flat ring epimorphisms satisfying the conditions (i) of Theorem 6.1. In-
specting the shape of the lattice, this amounts to a choice of an integer l ∈ Z which
is the smallest with respect to property Bl 6= 0, and then a choice of a decreasing
sequence

P ⊇ P0 ⊇ P1 ⊇ P2 ⊇ · · ·
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of subsets of the set P of prime numbers such that
⋂
n≥0 Pn = ∅, determined

by the property that Bl+n is isomorphic to Z[P−1
n ], the localization of Z at all

the prime numbers from Pn. For each n ≥ l, the connecting ring epimorphism
µn : Bn+1 → Bn is injective, and

Cone(µn) = Coker(µn) ∼=
⊕

p∈Pn\Pn+1

Z∞p ,

where Z∞p is the Prüfer p-group. The remaining non-trivial morphism µl−1 is of
form µl−1 : Bl → 0, and thus

Cone(µl−1) = Bl[1] = Z[P−1
l ][1].

Applying the constructions of Proposition 5.15 and Proposition 5.7, we obtain that
the desired silting object is the split complex

T = (
⊕
n≥0

⊕
p∈Pn\Pn+1

Z∞p [l + n])⊕ Z[P−1
l ][l]

and the cosilting object is the split complex

C = (
∏
n≥0

∏
p∈Pn\Pn+1

Jp[−l − n])⊕ Z[P−1
l ]+[−l],

where Jp = HomZ(Z∞p ,Q/Z) is the group of p-adic integers. Finally, note that T
is a bounded silting complex if and only if C is a bounded cosilting complex if and
only if there is n ≥ 0 such that Pn = ∅.

In subsection 6.4, we will show that a construction of silting and cosilting objects
similar to Example 6.2 is available also for the Kronecker algebra over a field.

6.2. Commutative rings of weak global dimension at most one. In the
commutative case, we can refine Theorem 5.12 and determine which TTF triples
are compactly generated. An essential ingredient is the classification of definable
coaisles over valuation domains provided in [20]. Recall that a valuation domain
is an integral domain such that its ideals are totally ordered by inclusion. Also,
a commutative ring A is of weak global dimension at most one if and only if its
localization Ap at each prime p ∈ Spec (A) is a valuation domain ([31, Corollary
4.2.6]).

Theorem 6.3. Let A be a commutative ring of weak global dimension at most one.
Then the bijection of Theorem 5.12 restricts to a bijection between

(i) equivalence classes of chains · · ·λn ≤ λn+1 · · · of flat ring epimorphisms;
(ii) minimal cosuspended TTF triples in D(A-Mod) which are compactly gen-

erated.

Proof. Let (U ,V,W) be a minimal cosuspended TTF triple in D(Mod-A) corre-
sponding to a chain · · ·λn ≤ λn+1 · · · via Theorem 5.12. For any prime ideal
p ∈ Spec (A) and any subcategory C of D(Mod-A) denote Cp = {X⊗AAp | X ∈ C},
viewed as a subcategory of D(Mod-Ap). By [20, Lemma 8.6], the pair (Up,Vp) forms
a t-structure in D(Mod-Ap) and Vp ⊆ V for all p ∈ Spec (A). Using the latter inclu-
sion, it follows easily that Vp = V ∩D(Mod-Ap), and also that the subcategory Vp
consists precisely of those complexes X such that Hn(X) belongs to Vn ∩Mod-Ap

for any n ∈ Z, where Vn is the subcategory of Mod-A defined in Proposition 5.4.
Then it is straightforward to check that the t-structure (Up,Vp) is obtained from
the chain · · · (λn⊗AAp) ≤ (λn+1⊗AAp) · · · of homological epimorphisms over the
ring Ap via Proposition 5.4. Therefore, there is a minimal cosuspended TTF triple
(Up,Vp,Wp) in D(Mod-Ap) again by Theorem 5.12.



40 LIDIA ANGELERI HÜGEL AND MICHAL HRBEK

It follows from the proof of [20, Theorem 8.7] that the t-structure (U ,V) is
compactly generated in D(Mod-A) if and only if (Up,Vp) is compactly generated
in D(Mod-Ap) for all p ∈ Spec (R). By [20, Theorem 9.4], the t-structure (Up,Vp)
is compactly generated in D(Mod-Ap) if and only if the chain · · · (λn ⊗A Ap) ≤
(λn+1 ⊗A Ap) · · · consists of flat epimorphisms over the valuation domain Ap. In
conclusion, the t-structure (U ,V) is compactly generated if and only if λn⊗AAp is a
flat ring epimorphism for each n ∈ Z and p ∈ Spec (A), which in turn is equivalent
to λn being a flat ring epimorphism over A for each n ∈ Z. This establishes the
bijection. �

The situation of Theorem 6.3 becomes even nicer if the ring is in addition co-
herent. Coherent rings of weak global dimension at most one are precisely the
semihereditary rings, that is, rings such that any finitely generated ideal is pro-
jective. Semihereditary commutative rings include valuation domains, and more
generally, Prüfer domains.

Recall that a hereditary torsion pair (T , C) in A-Mod is of finite type if C is
closed under direct limits.

Proposition 6.4. If A is a left semihereditary ring, the bijection in Corollary 4.18
assigning to a ring epimorphism λ : A → B the minimal cosilting class CogenB+

takes universal localizations of A to minimal cosilting classes of cofinite type, and
it induces a bijection between

(i) epiclasses of flat ring epimorphisms,
(ii) hereditary torsion pairs of finite type.

In particular, every hereditary torsion pair of finite type is induced by a minimal
cosilting module of cofinite type.

Proof. Let λ : A → B be a universal localization. By Theorem 4.6, the finitely
presented left A-modules whose projective resolutions are inverted by B form a
wide subcategoryM of A-mod such that λ is equivalent to the universal localization
λM at the projective resolutions of the modules in M. Consider the torsion pair
(TB = Ker (B ⊗A −), CB = CogenB+) in A-Mod. The torsion class TB obviously
contains M and thus also ⊥0(M⊥0), which in turn contains GenM, and from [57,
Lemma 5.1 and Theorem 5.5] it even follows that TB = ⊥0(M⊥0) = GenM. We
conclude that (TB , CB) is the torsion pair generated byM, which shows that CB is
a minimal cosilting class of cofinite type.

Assume now that λ : A → B is a flat ring epimorphism. Then (TB , CB) is
obviously a hereditary torsion pair of finite type. Conversely, every hereditary
torsion pair of finite type (T , C) is associated to a Gabriel topology with a basis
of finitely generated ideals (cf. [61, Chapter VI, Theorem 5.1, and Chapter XIII,
Proposition 1.2]), which are also projective by assumption on A. It then follows
from [61, Chapter XI, Propositions 3.3 and 3.4] that there is a flat ring epimorphism
λ : A→ B such that C consists of the left A-modules M whose reflection η : M →
B⊗AM is injective. By Proposition 4.15(2), this means that C = CB . Finally, λ is
equivalent to a universal localization by [8, Proposition 5.3], hence C is a minimal
cosilting class of cofinite type. �

Proposition 6.5. If A is a commutative semihereditary ring then any compactly
generated cosuspended TTF triple in D(Mod-A) is minimal.

Proof. Let (U ,V,W) be a compactly generated cosuspended TTF triple in
D(Mod-A). Recall from Theorem 5.9 that V = {X ∈ D(Mod-A) | Hn(X) ∈
Vn for all n ∈ Z} where Vn = {Hn(X) | X ∈ V}. Setting again Cn = Cogen (Vn),
we obtain an ascending sequence of cosilting classes . . . Cn ⊆ Cn+1 . . .. By [20,
Proposition 3.10 and its proof], for all n ∈ Z, the subcategory Vn is closed under
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taking injective envelopes in Mod-A, and there is a hereditary torsion pair (Tn, Cn)
of finite type. By Proposition 6.4, this means that all Cn are minimal cosilting
classes. Hence the TTF triple is minimal according to Definition 5.11. �

If we confine Proposition 6.5 to the module-theoretic case, we see that over a
commutative semihereditary ring the correspondence of Corollary 4.18 restricts to
a bijection between (equivalence classes of) flat ring epimorphisms and cosilting
modules of cofinite type. Notice moreover that the flat ring epimorphisms coincide
with the universal localisations in this case ([8, Proposition 5.3] and [22, Theorem
7.8]).

Remark 6.6. Let us give further comments on the minimality condition in the local
case, that is, over a valuation domain A. In this situation, whether a cosuspended
TTF triple with a definable middle term is minimal depends on certain invariants
of a topological nature. In what follows, we adhere closely to [20]. For any val-
uation domain A, [20, Theorem 8.3] establishes a bijection between the definable
coaisles in D(A-Mod) (and thus, also between the cosuspended TTF triples with a
definable middle term) and certain sequences of sets of intervals in Spec (A) called
the admissible sequences. Furthermore, [20, Theorem 9.4] shows that, under this
bijection, the minimal cosuspended TTF triples correspond to admissible sequences
which are non-dense, an additional topological condition. For example, if Spec (A)
is countable then all admissible sequences are non-dense, [20, Remark 9.5], and
therefore all cosuspended TTF triples in D(A-Mod) with a definable middle term
are minimal. On the other hand, there are valuation domains A with a rich supply
of admissible sequences with density, see [19, Example 5.1] or [20, Example 7.6] for
examples of cosilting modules and TTF triples which are not minimal.

Finally, let us sketch how the topological information given by an admissible
sequence fits together with the chain of ring epimorphisms under the minimality
condition. Let · · ·λn ≤ λn+1 · · · be a chain of homological ring epimorphisms
λn : A → Bn over a valuation domain A corresponding to a minimal cosuspended
TTF triple in D(A-Mod). Then the n-th term of the corresponding non-dense
admissible sequence is a collection of admissible intervals in the terminology of
[22], such that it recovers the Zariski spectrum Spec (Bn) by taking the disjoint
union of the intervals it contains via [22, Lemma 5.8] or under the correspondence
[22, Theorem 5.23], see [20, §9] for details.

6.3. Finite dimensional hereditary algebras. Our next result provides a clas-
sification of the compact silting objects over a finite dimensional hereditary algebra
A, establishing a bijection with finite chains of finite dimensional homological ring
epimorphisms. In particular, when A has finite representation type, this yields a
classification of all bounded silting complexes.

Theorem 6.7. Let A be a finite dimensional hereditary algebra over a field k. Every
compact silting complex T over A arises as in Proposition 5.15 from a finite chain
of finite dimensional homological ring epimorphisms 0A ≤ λn ≤ . . . ≤ λm ≤ idA.

Proof. To prove this, let V ′ = T⊥>0 and (U ′,V ′,W ′) be the compactly generated
suspended TTF triple in D(Mod-A) induced by T . We fix an integer n and denote

V ′n = {H−n(X) | X ∈ V ′}, W ′n = {H−n(X) | X ∈ W ′}, and Dn = GenV ′n.

Since A is a finite dimensional algebra, the co-t-structure (U ′,V ′) restricts to
a bounded co-t-structure in Kb(proj-A), see [13, Remark 4.7(2)]. So, there is a
triangle

U → A[n]
f→ V → U [1]
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where U and V are compact objects in U ′ and V ′, respectively. Taking cohomology,
we obtain a morphism

fn : A→ Vn

in mod-A which is clearly a V ′n-preenvelope of A. By choosing a left minimal version
of fn (see [18, Theorem 2.4]) we can even assume w.l.o.g. that fn is a V ′n-envelope.
Moreover, it is easy to see that fn is also a Dn-envelope of A, and that this implies
Dn = GenVn.

Dualizing the arguments in the proof of Theorem 5.9, we see that Dn = ⊥0W ′n
is a torsion class. Since Vn ∈ mod-A, it follows that Dn ∩ mod-A = gen Vn is a
functorially finite torsion class in mod-A, which is therefore generated by a finite
dimensional silting (that is, support τ -tilting) module Tn, see [1, Proposition 1.1
and Theorem 2.7]. In particular, it follows from [15, Lemma 4.6] that Dn = GenTn
is a minimal silting class.

By [14, Corollary 5.12] we can choose Tn of the form Tn = Bn ⊕Cokerλn where
λn : A→ Bn is a homological ring epimorphism to a finite dimensional algebra Bn.
Observe that GenBn = GenTn = Dn, and λn is also a Dn-envelope of A. But then,
since envelopes are unique up to isomorphism, we can also set Tn = Vn ⊕Cokerfn.

Now we apply the map Ψ of Theorem 3.1. The TTF triple (U ′,V ′,W ′) cor-
responds to a compactly generated TTF triple (U ,V,W) in D(A-Mod) which is
induced by the dual cosilting object C = T+. Denote again

Vn = {Hn(X) | X ∈ V} and Cn = CogenVn.

We know from Lemma 2.1(i) that Vn and V ′n are dual definable subcategories. As
in Proposition 4.9 we see that f+

n : V +
n → A+ is a Vn-precover of A+, hence also a

CogenVn-precover, and we deduce that Cn = CogenV +
n = CogenT+

n . Using Corol-
lary 4.21, we conclude that Cn is a minimal cosilting class for all n ∈ Z. Hence
(U ,V,W) is a minimal cosuspended TTF triple, and it follows from Theorem 5.12
that the minimal cosilting object C arises from a chain of homological ring epimor-
phisms with (5.7.1) by the construction in Proposition 5.7. Since C is a compact
complex, this chain has to be finite. Moreover, the conditions (5.7.1) imply that
the first term has to be the trivial epimorphism A→ 0, and the last term has to be
idA. Finally, the silting complex constructed as in Proposition 5.15 from the same
chain must be equivalent to T by Proposition 5.16. �

6.4. The Kronecker algebra. Throughout this subsection, unless stated other-
wise, A denotes the Kronecker algebra, i.e., the path algebra of the quiver • //// •
over a field k. This algebra has infinite representation type, but we can still classify
the silting objects of finite type and the pure-injective cosilting objects, as we are
going to see below.

We adopt terminology and notation from [53]. In particular, we denote by p, t,q
the classes of indecomposable preprojective, regular, and preinjective A-modules
(right or left, depending on the context). We fix a complete irredundant set of
quasi-simple (i.e. simple regular) modules U, and for each S ∈ U, we denote by
S[m] the module of regular length m on the ray

S = S[1] ⊂ S[2] ⊂ · · · ⊂ S[m] ⊂ S[m+ 1] ⊂ · · ·

and let S∞ = lim−→S[m] be the corresponding Prüfer module. The adic module S−∞
corresponding to S ∈ U is defined dually as the inverse limit along the coray ending
at S. If the field k is algebraically closed, the elements of U can be identified with
points in the projective line P1(k).

Observe that the dual of a Prüfer right A-module is the corresponding adic left
A-module. Moreover, viewed in D(Mod-A), the Prüfer modules occur as cones
of homological ring epimorphisms. Indeed, the universal localization of A at (the
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projective presentations of the quasi-simple modules in) a subset U of U gives rise

to a short exact sequence 0→ A
λ→ AU →

⊕
S∈U S∞ → 0 in Mod-A. In particular,

when U = U, we obtain a short exact sequence 0 → A
λ→ AU →

⊕
S∈U S∞ → 0

where the right A-module AU ∼= G2 is isomorphic to a direct sum of two copies of
the generic module G, and T = G⊕

⊕
S∈U S∞ is (equivalent to) the tilting module

arising from λ as in Example 4.14(2).
Let us review the classification of cosilting classes in A-Mod. We already know

from [11, Corollary 3.8] that every cosilting class is of cofinite type, and therefore
any cosilting left A-module is equivalent to the dual of a right silting A-module.
Then the dual version of [14, Example 5.18] gives a complete classification of cosilt-
ing classes in A-Mod, cf. also Example 4.10. In particular, the only cosilting class
that is not minimal is Cogen (W ), where W = L+ is the dual of the Lukas tilting
module in Mod-A. This cosilting class induces the torsion pair (Add (q),Cogen (W ))
in A-Mod.

Lemma 6.8. Let (U ,V) be a compactly generated t-structure in D(A-Mod) and let
(Cn | n ∈ Z) be the increasing chain of cosilting classes obtained by setting Cn =
Cogen (Vn). Suppose that Cl = Cogen (W ) for some l ∈ Z. Then D>l ⊆ V ⊆ D≥l.

Proof. We fix a set of representatives q = {Q0, Q1, Q2, . . .} of all indecomposable

preinjective left A-modules. Since Cogen (W ) = U⊥0

l by Theorem 5.9, it follows
that Ul+1 ⊆ Ul ⊆ Add (q). As every module from q has a local endomorphism ring,
Add (q) consists (up to isomorphism) of direct sums of copies of objects of q. Since
both Ul and Ul+1 are closed under direct summands and direct sums, these two
subcategories are determined by the objects from the set q they contain. Recall

that Vl = U⊥0

l ∩ U⊥1

l+1 ⊆ U
⊥0,1

l+1 . If Ul+1 6= 0, then it contains at least one object

from q, say Qk. Therefore, Vl ⊆ Q
⊥0,1

k = Add (Qk+1) (see [14, Example 5.18]).
But Vl ⊆ Cl = Cogen (W ) contains no non-zero preinjective, which forces Vl = 0, a
contradiction with Cogen (Vl) = Cogen (W ) 6= 0. Therefore, necessarily Ul+1 = 0.

Since Vn = U⊥0
n ∩ U⊥1

n+1 = A-Mod for any n > l, we proved that D>l ⊆ V.

To prove that V ⊆ D≥l, notice that 0 6= Ul ⊂ Add q must contain Qj for some

j ≥ 0. Then for all k < l we have that Vk = U⊥0

k ∩ U⊥1

k+1 ⊆ U
⊥1

l ⊆ Q⊥1
j . By the

Auslander-Reiten formula Q⊥1
j = ⊥0Qj+2, since we have an almost split sequence

0→ Qj+2 → Q2
j+1 → Qj → 0.

On the other hand, the modules in Vk ⊆ Cl = Cogen (W ) can’t have summands
isomorphic to one of Q0, Q1, . . . , Qj+1 and are therefore cogenerated by Qj+2. This
shows that Vk = 0 for all k < l. �

Recall from Theorem 3.11 that homotopically smashing t-structures in
D(A-Mod) are precisely the compactly generated ones, and pure-injective cosilt-
ing objects are precisely the ones of cofinite type. We are now ready for the first
classification result.

Theorem 6.9. Let A be the Kronecker algebra over a field k. The following is a
complete list of homotopically smashing t-structures in D(A-Mod):

(i) t-structures obtained from an increasing chain of homological epimorphisms
via Proposition 5.4,

(ii) shifts of the Happel-Reiten-Smalø t-structure induced by the torsion pair
(Add (q),Cogen (W )).

Proof. If the corresponding TTF triple is minimal, then we are in case (i) by The-
orem 5.12. Otherwise there is an integer l such that Cl is not minimal. Then
Cl = Cogen (W ), as that is the unique non-minimal cosilting class in A-Mod. So
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Lemma 6.8 applies and (U ,V) is the Happel-Reiten-Smalø t-structure induced by
the torsion pair (Add (q),Cogen (W )) shifted to degree l. �

According to Propositions 5.7 and 5.15, the cosilting t-structures, and the silting
t-structures are determined by the chains of homological ring epimorphisms (λn)
satisfying the condition (5.7.1), and (5.15.1), respectively. We are now going to see
that over the Kronecker algebra these conditions can both be rephrased by saying
that the chain (λn) has meet A→ 0 and join idA.

We recall the shape of the lattice of homological ring epimorphisms from [14,
Example 5.19]

idA

...

λ0 λ1 λ2 ... {λx|x ∈ U}

......... .........

... µ2 µ1 µ0

{λU\{x}|x ∈ U}
...

λU

0

where the interval between idA and λU represents the dual poset of subsets of
U. The ring epimorphisms with infinite dimensional target are those in frames,
that is, those of the form λU with ∅ 6= U ⊆ U. The remaining ring epimorphisms
are universal localizations at indecomposable preprojective or preinjective modules;
their targets, viewed as A-modules, are preprojective or preinjective, and as rings
they are all Morita equivalent to k.

Proposition 6.10. Let A be a hereditary ring. Consider a chain · · · ≤ λn ≤
λn+1 ≤ · · · of homological ring epimorphisms λn : A→ Bn, and denote by Xn and
X ′n the corresponding bireflective subcategories of A-Mod and Mod-A, respectively.
Moreover, define as above the subcategories Ln = Ker (Bn⊗L

A−) of D(A-Mod) and
Kn = Ker RHomA(Bn,−) of D(Mod-A).

(1)
⋂
n∈Z X ′n = 0 if and only if

⋂
n∈Z Xn = 0, and this means precisely that the

meet
∧
n∈Z λn equals the trivial ring epimorphism A→ 0.

(2)
⋂
n∈ZKn = 0 implies

⋂
n∈Z Ln = 0, which in turn implies that the join∨

n∈Z λn equals idA.
(3) If A is the Kronecker algebra, then

⋂
n∈Z Ln = 0 if and only if

⋂
n∈ZKn = 0,

and this means precisely that the join
∨
n∈Z λn equals idA.

Proof. (1) is clear.
(2) The first implication follows from Lemma 3.2 (or by checking directly using

the duality (−)+). Moreover, by Theorem 4.4, the condition
⋂
n∈Z Ln = 0 is equiv-

alent to
⋂
n∈Z

⊥0,1Xn = ⊥0,1(
⋃
n∈Z Xn) = 0, which implies that the join

∨
n∈Z λn

equals idA. To see the latter, recall from Theorem 4.6 that λn coincides with the
universal localization at the wide subcategory Mn = ⊥0,1Xn ∩ A-mod of A-mod,

and that Xn =M⊥0,1
n . Now it is easy to check that the join

∨
n∈Z λn is the universal

localization at
⋂
n∈ZMn, which is contained in ⊥0,1(

⋃
n∈Z Xn).
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(3) We have to verify that
⋂
n∈ZKn = 0 whenever the join

∨
n∈Z λn equals idA.

Observe that
⋂
n∈ZKn =

⋂
n∈Z X ′n ⊥Z = (

⋃
n∈Z X ′n)⊥Z .

Now we have two cases. In the first case, the chain involves only a finite number
of different ring epimorphisms. Then the join coincides with the largest member of
the chain, hence

⋃
n∈Z X ′n = Mod-A, and the claim is proven.

In the second case, there is a chain of strictly decreasing subsets U ⊇ U0 ⊃ U1 ⊃
U2 ⊃ · · · of the representative set U of all quasi-simples such that λn : A → Bn
is the universal localization at the (projective presentations of the simple regular
modules in the) set Un for each n ∈ ω. Now one can see, e.g. from the shape of
the lattice, that for any simple regular left A-module S there is n ∈ Z such that
S ∈ X ′n, and moreover, that all λn lie above the universal localization at U, which
means precisely that G ∈ X ′n. It follows that Loc (

⋃
n∈Z X ′n) contains the right A-

module T = G⊕
⊕

S∈U S∞, which is a right tilting A-module and therefore satisfies

T⊥Z = 0. This shows the claim. �

As a consequence, we get the following classification of the pure-injective cosilting
objects, and dually, of silting objects of finite type.

Theorem 6.11. Let A be the Kronecker algebra over a field k. Every pure-injective
cosilting object in D(A-Mod) arises from a chain of homological ring epimorphisms
with meet 0A : A → 0 and join idA : A → A, or it is equivalent to a shift of the
cotilting module W .

The following is a complete list of all pure-injective cosilting objects, up to equiv-
alence:

(i) shifts of the non-minimal cotilting module W ;
(ii) for any finitely dimensional homological epimorphism λ : A → B, and for

all integers l ≤ m, the cosilting object

C = B+[−l]⊕ Cone(λ)+[−m]

with induced t-structure arising from the following chain of bireflective sub-
categories of A-Mod:

Xn =


0 n < l

XB l ≤ n ≤ m
A-Mod l > m;

(iii) for any l ∈ Z, and any chain of subsets U ⊇ U0 ⊇ U1 ⊇ U2 ⊇ · · · such that⋂
n∈ω Un = ∅, the cosilting object

C = B+
0 [−l]⊕

∏
n∈ω

(
∏

S∈Un\Un+1

S−∞[−n− l]),

where λn : A→ Bn denotes the universal localization at the set Un, and the
induced t-structure arises from the following chain of bireflective subcate-
gories of A-Mod:

Xn =

{
0 n < l

XBn−l
l ≤ n.

Theorem 6.12. Let A be the Kronecker algebra over an algebraically closed field
k. The assignment T 7→ T+ induces a bijection between

(1) equivalence classes of silting objects of finite type in D(Mod-A),
(2) equivalence classes of pure-injective cosilting objects in D(A-Mod).

Every silting object of finite type in D(Mod-A) arises from a chain of homological
ring epimorphisms with meet 0A : A→ 0 and join idA : A→ A, or it is equivalent
to a shift of the Lukas tilting module L.
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The following is a complete list of all silting objects of finite type, up to shift and
equivalence:

(i) the non-minimal tilting module L;
(ii) for any finite-dimensional homological epimorphism λ : A→ B, the silting

object
B ⊕ Cone(λ)[m];

(iii) for any chain of subsets U ⊇ U0 ⊇ U1 ⊇ U2 ⊇ · · · such that
⋂
n∈ω Un = ∅,

the silting object

B0 ⊕
⊕
n∈ω

(
⊕

S∈Un\Un+1

S∞[n]),

where λn : A→ Bn denotes the universal localization at Un.

Proof. By the classification of pure-injective cosilting objects of D(A-Mod), any
minimal cosilting object C is induced by a chain of homological epimorphisms with
meet 0A : A → 0 and join Id : A → A. According to Propositions 5.16 and 6.10,
this chain also gives rise to a silting object of finite type in D(Mod-A), which is the
preimage of C under the injective map Ψ in Theorem 3.3. We infer that the assign-
ment T 7→ T+ induces a bijection between silting objects of finite type in D(Mod-A)
and pure-injective cosilting objects in D(A-Mod). The classification then follows
from the classification of cosilting objects in D(A-Mod) and Proposition 5.15. �
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[8] L. Angeleri Hügel, M. Archetti, Tilting modules and universal localisation, Forum

Math. 24 (2012) 709-731.
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[22] S. Bazzoni, J. Šťov́ıček, Smashing localizations of rings of weak global dimension at

most one, Advances in Mathematics 305 (2017): 351-401.
[23] A. Beligiannis, Relative Homological Algebra and Purity in Triangulated Categories, J.

Algebra 227, (2000), 268–361.

[24] G. Bergman, W. Dicks, Universal derivations and universal ring constructions, Pacific J.
Math.79 (1978), 293-337.

[25] S. Breaz, F. Pop, Cosilting modules, Algebr. Represent. Theory 20 (2017), 1305–1321.

[26] L. W. Christensen, H. Holm, The direct limit closure of perfect complexes, Journal of
Pure and Applied Algebra 219.3 (2015): 449-463.

[27] P.M. Cohn, Free Ideal Rings and Localization in General Rings, Cambridge University

Press (2006).
[28] W. Geigle, H. Lenzing, Perpendicular categories with applications to representations

and sheaves, J. Algebra 144, (1991), no.2, 273–343.

[29] P. Gabriel, J. de la Peña, Quotients of representation-finite algebras, Comm. Algebra
15 (1987), no. 1-2, 279–307.

[30] G. Garkusha, M. Prest, Triangulated Categories and the Ziegler Spectrum, Algebras
and Representation Theory 8 (2005), 499–523.

[31] S. Glaz, Commutative coherent rings, Volume 1371 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 1989.
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[49] P. Nicolás, M. Saoŕın, Parametrizing recollement data for triangulated categories, J.

Algebra. 322 (2009) 1220–1250.

[50] M. Prest, Purity, spectra and localisation, Cambridge University Press 2009.



48 LIDIA ANGELERI HÜGEL AND MICHAL HRBEK
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