miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.

Comparative analysis identifies micro-RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis helleri

Elisa Fasani;Giovanni DalCorso
;
Gianluca Zorzi;Nicola Vitulo;Antonella Furini
2021-01-01

Abstract

miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.
2021
Arabidopsis halleri
Arabidopsis thaliana
Zn homeostasis
development
metal hyperaccumulation
miRNA
nutrition
stress
Gene Expression Regulation, Plant
Homeostasis
Nutrients
Zinc
Arabidopsis
Arabidopsis Proteins
MicroRNAs
File in questo prodotto:
File Dimensione Formato  
2021 - Physiol plantarum - Comparative analysis identifies micro-RNA associated with nutrient homeostasis.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 5.36 MB
Formato Adobe PDF
5.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1051421
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact