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Abstract

miRNAs have been found to be key players in mineral homeostasis, both in the con-

trol of nutrient balance and in the response to toxic trace elements. However, the

effect of Zn excess on miRNAs has not been elucidated; moreover, no data are pre-

sent regarding miRNAs in hyperaccumulator species, where metal homeostasis is

tightly regulated. Therefore, expression levels of mature miRNAs were measured by

RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon

high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control condi-

tions. Differential expression of notable miRNAs and their targets was confirmed by

real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated

upon Zn treatment that is associated with stress response and nutrient homeostasis.

On the other hand, a more consistent group of miRNAs was differentially expressed

in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional

requirements and response to stresses and plant growth and development. Overall,

these results confirm the involvement of miRNAs in Zn homeostasis and support the

hypothesis of distinct regulatory pathways in hyperaccumulator species.
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1 | INTRODUCTION

Micro-RNAs (miRNAs) are small single-stranded noncoding RNAs

involved in regulating gene expression by repression of specific tar-

gets. Their biogenesis in plants proceeds by a complex pathway that

ensures flexibility and adaptability to endogenous and environmental

stimuli; such processes have been reviewed extensively (Achkar

et al. 2016; Song et al. 2019). miRNA activity can regulate gene

expression in different ways. These include (1) direct cleavage and

subsequent degradation of target mRNA, (2) translational repression

by blocking ribosome recruitment and/or progression, and (3) direction

of DNA methylation (Song et al. 2019). To add to the complexity of

the system, both miRNA transcription and processing and their activ-

ity are tightly regulated (Song et al. 2019; Stepien et al. 2017).

miRNAs are involved in all plant processes, including metabolism

and development, interaction with the environment and stress
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responses. In particular, they are key players in determining pheno-

typic plasticity in response to environmental stimuli, such as light,

temperature and nutrient availability. Regarding stresses, they are

involved in plant immunity toward a variety of pathogens, as well as in

response to different abiotic stresses (Song et al. 2019). Indeed, mod-

ulation of large sets of miRNAs during abiotic stress response has

been demonstrated for extreme temperatures (Chen et al. 2012; Yu

et al. 2012; Zeng et al. 2018; Zhang et al. 2014a, 2014b), drought

(Bertolini et al. 2013; Zhang et al. 2014a, 2014b), salinity (Carnavale

Bottino et al. 2013; Sun et al. 2015), and wounding (Tang et al. 2012;

Wang et al. 2014). In addition to miRNA transcriptional control, the

whole biogenetic machinery responds to stress conditions through

transcriptional, posttranslational and proteolytic regulation on several

elements of the biogenetic complexes (Manavella et al. 2019).

Among the environmental conditions triggering miRNA modula-

tion, metal content in soil is a significant one. Indeed, plant homeosta-

sis of trace elements is tightly regulated, as plants must both ensure

adequate uptake and metabolism of essential elements and avoid tox-

icity due to excess of micronutrients as well as the presence of nones-

sential elements. In this context, miRNAs are key players in the fine-

tuning of metal homeostasis. For example, analyses in Cu-deficient

conditions revealed the up-regulation of a highly conserved set of

miRNAs including miR397, miR398, miR408, and miR857, leading to

repression of dispensable Cu-containing proteins and redistribution of

Cu reserves toward essential processes such as photosynthesis

(Abdel-Ghany & Pilon 2008; Lu et al. 2011). On the other hand, Cu

excess, an increasingly common situation due to agricultural practices,

promotes down-regulation of previously cited Cu-responsive miRNAs,

as well as modulation of others involved in stress response and metal

transport (Fu et al. 2019; Jiu et al. 2019). Several toxic metals and

metalloids have also been found to induce significant modulation of

miRNAs. The involvement of the latter in stress due to Cd, Hg, As, Al,

Pb, Cr, and Mn has been extensively reviewed (Ding et al. 2020;

Noman et al. 2019; Noman & Aqeel 2017). In these cases, miRNA

activity generally leads to reorganization of plant development and

modulation of antioxidants and stress responses, although the modu-

lated sets of miRNAs are element-specific (Ding et al. 2020; Noman &

Aqeel 2017).

Zn is an extremely interesting element in this context: indeed, as

a micronutrient, Zn is essential for all living organisms. This metal is a

fundamental co-factor, with both structural and catalytic functions, in

a large variety of proteins. It has been estimated that, on average,

about 9% of the whole eukaryotic proteome is composed of Zn-

binding proteins, of the latter, the majority is predicted to be either

enzymes (47%) or transcription factors (44%; Andreini et al. 2009). In

Arabidopsis thaliana, more than 2000 proteins have been proposed by

bioinformatic analysis to bind or transport Zn (Andreini et al. 2009),

involved in a variety of extremely important processes, including DNA

synthesis, transcription and translation, photosynthesis and proteo-

lytic control of protein activity (Hänsch & Mendel 2009). On the other

hand, Zn excess can prove detrimental for plants: toxicity can derive

from competition with other metallic co-factors and indirect forma-

tion of reactive oxygen species (ROS), resulting in impairment of

photosynthesis, cell death and generally stunted growth

(DalCorso 2012). In light of this, Zn homeostasis in plants needs to be

under tight control. Although precise determination of Zn require-

ments is difficult to achieve, it has been estimated that the internal

level of free Zn is below the nanomolar range in eukaryotic cells. In

plants, optimal Zn concentrations, including both free and chelated or

compartmentalized metal, are generally between 15 and 50 mg kg�1

dry biomass (Hänsch & Mendel 2009; Sinclair & Krämer 2012). How-

ever, this range is extremely variable, in line with the vast natural

diversity of plants adapted to different environments and edaphic

conditions.

Interestingly, a class of plants has been identified, called hyper-

accumulators, able to accumulate extremely high metal concentrations

in their above-ground tissues and to tolerate them without showing

toxicity symptoms (Baker & Whiting 2002; Krämer 2010). Among

them, the facultative metallophyte Arabidopsis halleri is particularly

interesting due to its constitutive ability to hyper accumulate Zn and

its close phylogenetic proximity with model species A. thaliana

(Krämer 2010). Transcriptomic analyses comparing nonaccumulator

A. thaliana with hyperaccumulator A. halleri highlighted differential

modulation of several genes involved in nutrient homeostasis and

stress responses, many of which are constitutively expressed at high

levels in A. halleri (Becher et al. 2004; Talke et al. 2006; Weber

et al. 2004).

Despite the amount of data available for protein-coding trans-

criptome, very little work has been produced regarding the Zn effect

on small regulatory RNAs. Zn-deficient conditions were analyzed in

Brassica juncea and Sorghum bicolor, revealing a comparatively small

set of modulated miRNAs, mostly involved in plant development and

stress response (Li et al. 2013; Shi et al. 2013). However, no evidence

is present concerning their modulation under Zn excess. Therefore,

this study aims to investigate miRNA modulation in A. thaliana when

treated with high Zn supplementation in soil. A transcriptomic analysis

by miRNA-Seq was performed comparing untreated and treated

A. thaliana with untreated A. halleri plants to estimate both the Zn

effect on the nonaccumulator species and naturally active strategies

in the hyperaccumulator species. The results indicated a major varia-

tion in expression between the two species. Only a small miRNA sub-

set was found to be differentially expressed in A. thaliana upon Zn

treatment. Overall, modulated miRNAs participate mainly in the con-

trol of plant development, nutrient uptake and distribution, and stress

response, confirming the involvement of small regulatory RNAs in

controlling global plant processes associated with Zn homeostasis.

2 | MATERIALS AND METHODS

2.1 | Plant material and growth conditions

Arabidopsis thaliana (L.) Heynh. accession Columbia and Arabidopsis

halleri (L.) O'Kane & Al-Shehbaz population I16 (Val del Riso, northern

Italy, 45�51034.40 N 9�52034.94 E; Meyer et al. 2015) were used for

this study. Seeds were stratified for 3 days at 4�C to break seed
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dormancy, then sown in garden soil and grown in a growth chamber

on a short-day regime (8 hr light/16 hr dark, illumination 100–

120 μmol m�2 s�1, day/night temperature 22/18�C). Four-week-old

plants were watered with either water (A. thaliana control and A. halleri)

or with 500 μM ZnSO4 (A. thaliana + Zn) for 1 week. Total Zn content

in treated and untreated soil was measured at the end of the experi-

ment by inductively coupled plasma atomic emission spectrometry

(ICP-AES), as described by Fasani et al. (2019). Total Zn in soil was 52.6

± 1.1 mg kg�1 DW in control conditions and 165.0 ± 5.9 mg kg�1 DW

in Zn-treated conditions; these results are comparable with the mean

values observed worldwide for Zn content in soils and with a moder-

ately Zn-rich soil, respectively (Alloway 2008; Kabata-Pendias 1995).

CaCl2-extractable Zn, corresponding to soluble and exchangeable metal,

was obtained by incubating air-dried soil in 10 mM CaCl2 in a 1:2.5 pro-

portion for 16 hr; the resulting solution was filtered and analyzed by

ICP-AES. CaCl2-extractable Zn was 0.23 ± 0.01 mg kg�1 DW in control

conditions and 0.75 ± 0.02 mg kg�1 DW in Zn-treated conditions;

these values fall in the range of CaCl2-extractable Zn obtained in

previous studies (Esnaola et al. 2000; Pueyo et al. 2004).

Rosettes of untreated and treated plants were collected and fro-

zen in liquid nitrogen for further analyses. Three pools of five plants

each were collected for each condition and genotype and considered

as three different biological replicates.

2.2 | Physiological analysis of plants

Chlorophylls were extracted in 80% aqueous acetone buffered with

NaCO3; total chlorophyll content was measured as described by Porra

et al. (1989).

In situ O2
� accumulation in above-ground tissues was detected

by nitroblue tetrazolium (NBT) staining, as reported in Rossetti and

Bonatti (2001). Superoxide dismutase (SOD) activity was evaluated by

native polyacrylamide gel electrophoresis (PAGE) and in-gel NBT

staining, as in Chu et al. (2005); equal protein loading (30 μg) was

demonstrated by Coomassie staining of a replica gel in SDS-PAGE.

Quantification of global SOD activity was achieved by scanning the

gels and determining band intensity with Quantity OneR software

v4.4.1 (Bio-Rad).

Zn concentration in leaves was determined by ICP-AES as previ-

ously indicated (Fasani et al. 2019). Each of the analyses here reported

was performed in triplicate.

2.3 | miRNA-Seq analysis

Sampled material was ground in liquid nitrogen, and small RNAs were

extracted using the mirPremier microRNA Isolation Kit (Sigma-

Aldrich), according to the manufacturer's instructions. Small RNA con-

centration and purity were measured using a NanoDrop OneC Micro-

volume UV–Vis Spectrophotometer (Thermo Fisher Scientific), and

integrity was assessed by the Bioanalyzer Small RNA Analysis Kit

(Agilent Technologies) and the 2100 Bioanalyzer (Agilent

Technologies). Sequencing was performed using the Illumina HiSeq

2500 platform (Illumina) at the IGA Technology Services (Udine).

Reads were processed using the miRPlant tool (An et al. 2014). At

first, reads were trimmed for the adapter sequence, and the reads

with a length lower than 18 and higher than 22 were discarded. The

reads were aligned against the A. thaliana miRNAs in the miRBase

database (http://mirbase.org/; Kozomara et al. 2019), with the Java-

coded bowtie algorithm implemented in miRPlant software not all-

owing any mismatch. For miRNA quantification, only reads completely

covering a mature miRNA were considered. The differential miRNA

expression analysis between the samples was performed using the

edgeR package (Robinson et al. 2010). Read counts were normalized

using the TMM normalization method implemented in the EDASeq

package. Differentially expressed miRNAs were identified based on a

False Discovery Rate-corrected P value <0.05.

RNA-Seq heatmap was generated using the R package heatmap.2.

miRNA reads counts were z-score transformed and clustered

according to the Pearson correlation and “average linkage” method.

miRNA targets were identified on the DPMIND database

(https://cbi.njau.edu.cn/DPMIND/; Fei et al. 2018), considering an

expectation threshold of 3. GO term enrichment analysis of miRNA

targets was performed using the Functional Annotation tool in DAVID

(https://david.ncifcrf.gov/; Huang et al. 2009), applying a medium

classification stringency.

2.4 | Northern blot analysis

Small RNAs were purified from the previously collected samples using

the mirPremier microRNA Isolation Kit (Sigma-Aldrich). About 1.5 μg

small RNAs was separated on a denaturing 15% polyacrylamide gel con-

taining 7 M urea and then transferred on a Hybond-N+ nylon mem-

brane (GE Healthcare) in a semi-dry electroblotter. DNA oligo probes

were labeled with [γ-32P]ATP using the mirVana Probe & Marker Kit

(Thermo Fisher Scientific); probe sequences are reported in Table S1.

Blots were pre-hybridized for 30 min in the ULTRAHyb-Oligo Hybridi-

zation Buffer (Thermo Fisher Scientific). Hybridization was performed at

38�C overnight, according to the manufacturer's instructions. Signals

were detected on an autoradiography film. Blots were then stripped

and rehybridized with a probe complementary to U6 (Table S1) as a

loading control to overcome unintended differences in RNA loading.

Band intensity was measured using the Image Lab software (Bio-Rad).

Accumulation of mature miRNAs was evaluated as the ratio between

miRNA probe intensity and U6 probe intensity.

2.5 | Real-time RT-PCR

Total RNAs were purified from the previously collected samples using

the TRIzol reagent (Thermo Fisher Scientific), according to the manufac-

turer's instructions. After DNase treatment, first-strand cDNA was syn-

thesized from 2 μg of total RNA using the Superscript III Reverse

Transcriptase Kit (Thermo Fisher Scientific). Real-time RT-PCR was
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performed using the Platinum SYBR Green qPCR SuperMix-UDG kit

(Thermo Fisher Scientific) and a StepOnePlus Real-Time PCR System

(Applied Biosystems). Each reaction (40 amplification cycles) was carried

out in triplicate; melting curve analysis was applied to confirm amplifica-

tion specificity. Primers for miRNAs and miRNA targets are listed in

Table S2. Endogenous reference genes for data normalization were

β-ACTIN (At5g09810) and UBIQUITIN 10 (At4g05320). Relative expres-

sion was evaluated using the 2�ΔΔCT method (Livak & Schmittgen 2001).

2.6 | Statistical analysis

Data in histograms are represented as mean ± SD. miRNA-Seq data

were compared by the edgeR package (Robinson et al. 2010) based

on a False Discovery Rate-corrected P value <0.05. Statistical signifi-

cance of all other experimental data was evaluated using GraphPad

Prism 7 (GraphPad Software); results were analyzed by one-way

ANOVA followed by a post hoc Tukey's test. Statistically significant

variations at P < 0.05 are marked with letters, the same letter

corresponding to nonstatistically significant differences.

3 | RESULTS

3.1 | A. thaliana and A. halleri do not show stress
symptoms under the growth conditions applied

A. thaliana plants were grown in soil upon control conditions

(untreated soil) and moderate Zn enrichment (soil watered with

500 μM ZnSO4), whereas A. halleri was grown in control conditions to

identify constitutively present strategies for Zn tolerance. To deter-

mine whether the growth conditions had an impact on plant fitness,

the Zn accumulation and stress parameters were evaluated (Figure 1).

All plants did not show visible stress symptoms and had a normal

development (Figure 1A). Chlorophyll content was equal in untreated

and Zn-treated A. thaliana and about 40% higher in untreated

A. halleri (Figure 1B); chlorophyll a/b ratio was similar in all plants con-

sidered (ca. 3.2, data not shown). NBT staining of whole rosettes rev-

ealed higher O2
� accumulation in Zn-treated A. thaliana plants when

compared with untreated A. thaliana and A. halleri ones (Figure 1C);

this is associated with higher global SOD activity, as highlighted by in-

gel SOD analysis (Figure 1D). Zn accumulation was moderately,

although not significantly, higher in Zn-treated A. thaliana plants com-

pared to untreated ones; Zn concentration in A. halleri leaves was

double than in A. thaliana (Figure 1E).

3.2 | Several miRNAs are differentially expressed
under Zn treatment and between A. thaliana and
A. halleri

The miRNA-Seq analysis, considering untreated and Zn-treated

A. thaliana and untreated A. halleri, identified 129 expressed miRNAs

for a total number of reads ranging between about 61 and 81 million/

sample. The most represented family was miR166, which was also the

most expressed in all genotypes and conditions (for 3p strands, 94%

of all reads in A. halleri, about 88% in A. thaliana); also abundant were

miR398, miR396, and miR165 isoforms (Figure 2A, Data S2). On the

contrary, miR169 3p isoforms and miR395 were not expressed in

A. thaliana. Moreover, no reads were detected for several miRNAs in

A. halleri; of them, miR172e-5p, miR391-3p, and -5p showed com-

plete sequence identity between A. thaliana and A. halleri, verified by

sequence alignment with the A. halleri spp. gemmifera genome

(Briskine et al. 2017), and therefore confirmed as not expressed. As

for the other miRNAs not identified in A. halleri, they were either

absent in the genome sequence or not conserved regarding sequence

identity and were therefore not considered for further analysis.

Given these premises, the comparative analysis revealed 81 differ-

entially expressed miRNAs belonging to 33 already described families

(Table 1, Data S2). Major variations were found between A. thaliana

and A. halleri (Figure 2B,C): 77 and 73 miRNAs were differentially

expressed when comparing A. halleri with control and Zn-treated

A. thaliana, respectively. On the other hand, only eight miRNAs were

significantly up- (miR163, miR398a-5p, miR827, and miR850) or

down-regulated (miR167a-5p, miR167b, miR167d, and miR822-5p)

upon Zn treatment in A. thaliana; miR163, miR167a-5p, miR167b,

miR167d, and miR827 were also down-regulated in A. halleri com-

pared to A. thaliana.

The function of a wide proportion (37%) of the modulated

miRNAs is unknown: of these, the majority consists of the comple-

mentary sequences referenced as “passenger strands” and still poorly

characterized. Of the remaining, the most represented functional class

(41%) is associated with plant development; several miRNAs are also

involved in nutrient homeostasis and response to biotic stresses (12%

and 5%, respectively, Figure 2D).

Validation of RNA-Seq results was performed on a set of remark-

able miRNAs involved either in development (miR157, miR159,

miR319, and miR390) or nutrient homeostasis (miR395, miR398, and

miR408). Northern blot on the mature miRNA or real-time RT-PCR on

its precursor was applied according to their expression levels, esti-

mated by their read counts in each sample in RNA-Seq analysis. When

low numbers of reads were detected, expression analysis by real-time

RT-PCR on precursors was used. miR159 and miR398, having signifi-

cantly high read counts, were tested by both methods to confirm the

consistency of the analysis. The results confirmed the modulation of

the selected miRNAs in untreated and Zn-treated A. thaliana, and in

untreated A. halleri (Figure 3).

3.3 | Plant development and stress response are
differentially controlled in A. halleri and upon Zn
treatment in A. thaliana

miRNA targets were predicted by comparison with the DPMIND data-

base (Fei et al. 2018); lists were manually integrated with data from

the literature for those experimentally confirmed targets that were
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excluded by the bioinformatic prediction (Data S3). Functional annota-

tion and enrichment analysis by the DAVID software produced several

enriched functional clusters responsible for a variety of different molec-

ular processes and biological functions (Data S4). When considering the

targets of miRNAs modulated in A. thaliana upon Zn treatment, the

functional analysis revealed the enrichment of S-adenosylmethionine-

dependent methyltransferases (cluster 1, enrichment score

[ES] = 10.05), involved in stress response and targeted by miR163. The

other statistically significant enriched cluster under Zn treatment

includes Zn finger and Cys/His-rich proteins with unknown biological

function (cluster 2, ES = 4.56), targeted by miR822. Regarding the com-

parison between A. thaliana and A. halleri, a wider set of functions was

identified in miRNA targets. Stress response is enriched also in this tar-

get subset: in particular lectins (cluster 1, ES = 18.78) and tetra�/

pentatricopeptide repeat proteins (cluster 3, ES = 7.20) are involved in

defense against biotic stresses, whereas S-adenosylmethionine-
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dependent methyltransferases (cluster 4, ES= 5.72) and superoxide dis-

mutases (cluster 7, ES = 2.99) are associated with more general stress

responses. Moreover, functional enrichment revealed several clusters of

transcription factors involved in various developmental processes

(clusters 2, 6, 8, 9, 14, and 18, Data S4); of these, the most noticeable is

associated with the auxin signaling pathway (cluster 8, ES= 2.25). Some

enriched functions are also linked with mineral homeostasis, in particu-

lar Cu (clusters 11 and 16).
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TABLE 1 List of differentially expressed miRNAs, as resulting from the comparative RNA-Seq analysis between untreated (Ath-C) and Zn-
treated A. thaliana (Ath + Zn) and untreated A. halleri (Aha)

Family miRNA

FC [log2(Aha/

Ath-C)]

P value (Aha/

Ath-C)

FC [log2(Aha/

Ath + Zn)]

P value (Aha/

Ath + Zn)

FC [log2(Ath +

Zn/Ath-C)]

P value (Ath +

Zn/Ath-C)

miR156 ath-miR156b-3p 2.32 7.00E�27 2.12 9.68E�23

ath-miR156c-3p �0.80 3.47E�02

ath-miR156d-5p �1.23 2.29E�18 �1.10 3.71E�42

ath-miR156h 2.09 2.82E�08 1.47 1.10E�05

miR157 ath-miR157a-3p �1.60 3.32E�12 �1.48 1.99E�08

ath-miR157a-5p �2.69 3.85E�65 �2.54 2.49E�170

ath-miR157b-3p �1.60 3.55E�12 �1.48 1.90E�08

ath-miR157b-5p �2.69 1.95E�65 �2.54 1.07E�171

ath-miR157c-3p �3.48 3.67E�92 �3.25 6.28E�143

ath-miR157c-5p �2.69 1.79E�64 �2.54 1.45E�165

ath-miR157d �2.10 5.44E�38 �1.78 2.83E�42

miR158 ath-miR158a-5p 3.38 4.30E�60

ath-miR158b �0.57 8.95E�04 �0.52 1.71E�03

miR159 ath-miR159a 0.30 9.58E�05

ath-miR159b-3p 0.45 2.58E�03 0.30 2.90E�04

ath-miR159c 3.94 1.39E�140 3.93 2.04E�199

miR160 ath-miR160a-5p �0.64 1.28E–04 �0.73 2.04E�03

ath-miR160c-5p �0.64 1.46E�04 �0.73 1.87E�03

miR162 ath-miR162a-5p �1.38 6.42E�12 �1.72 3.37E�16

miR163 ath-miR163 �1.53 2.77E�10 �2.19 4.94E�30 0.66 1.90E�03

miR165 ath-miR165a-5p 1.64 3.61E�10 1.58 2.69E�10

miR166 ath-miR166a-5p �1.45 2.27E�13 �1.76 1.86E�31

ath-miR166b-3p 0.35 3.47E�02 0.22 3.31E�02

ath-miR166b-5p �1.45 1.71E�13 �1.76 1.18E�32

ath-miR166c 0.35 3.47E�02 0.22 3.39E�02

ath-miR166d 0.35 3.47E�02 0.22 3.58E�02

ath-miR166e-3p 0.35 3.61E�02 0.22 3.39E�02

ath-miR166e-5p �0.99 9.64E�03

ath-miR166f 0.35 3.49E�02 0.22 3.59E�02

ath-miR166g 0.35 3.49E�02 0.22 3.31E�02

miR167 ath-miR167a-3p �1.48 1.00E�10 �1.38 8.08E�13

ath-miR167a-5p �0.57 2.59E�03 �0.51 6.81E�05

ath-miR167b �0.57 2.59E�03 �0.51 6.81E�05

ath-miR167d �0.62 8.98E�04 �0.55 6.81E�05

miR168 ath-miR168a-3p �0.54 1.74E�03 �0.77 2.34E�14

ath-miR168a-5p �0.33 4.21E�02 �0.58 8.40E�08

ath-miR168b-3p �0.79 1.02E�04 �1.07 8.24E�13

ath-miR168b-5p �0.34 4.10E�02 �0.58 8.20E�08

miR169 ath-miR169f-3p OFF in Ath-C 5.70E�46 OFF in Ath + Zn 4.79E�44

ath-miR169g-3p OFF in Ath-C 6.61E�22 OFF in Ath + Zn 1.24E�21

miR170 ath-miR170-5p 1.38 5.51E�09 1.17 1.95E�06

miR171 ath-miR171a-3p 2.62 7.16E�09 2.75 3.58E�08

ath-miR171a-5p 1.38 8.20E�09 1.17 2.48E�06

ath-miR171b-3p 0.56 1.90E�02 1.04 1.39E�05

ath-miR171b-5p 1.27 1.38E�03 1.20 2.09E�03

(Continues)
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To confirm the modulation of target genes, a real-time RT-PCR

analysis was performed on untreated and Zn-treated A. thaliana and

on untreated A. halleri. The following targets were chosen due to their

involvement in either development or stress response and to

their regulation by cleavage: SQUAMOSA PROMOTER BINDING

PROTEIN-LIKE 3 (SPL3, AT2G33810) for miR156 and miR157; TCP

FAMILY TRANSCRIPTION FACTOR 4 (TCP4, AT3G15030) for miR319;

TRANS-ACTING SIRNA3 (TAS3, AT3G17185) for miR390; COPPER/

ZINC SUPEROXIDE DISMUTASE 1 (CSD1, AT1G08830), COPPER/

ZINC SUPEROXIDE DISMUTASE 2 (CSD2, AT2G28190), and COPPER

CHAPERONE FOR SOD1 (CCS1, AT1G12520) for miR398; and

LACCASE13 (LAC13, AT5G07130) for miR408 (Figure 4). Transcription

factor SPL3 was expressed at higher levels in A. halleri, in line with the

overall lower levels of its regulators miR156-5p and miR157-5p. Anal-

ogously, the precursor of trans-activated siRNA3, TAS3, the transcrip-

tion factor TCP4 has an expression profile that is consistent with its

TABLE 1 (Continued)

Family miRNA

FC [log2(Aha/

Ath-C)]

P value (Aha/

Ath-C)

FC [log2(Aha/

Ath + Zn)]

P value (Aha/

Ath + Zn)

FC [log2(Ath +

Zn/Ath-C)]

P value (Ath +

Zn/Ath-C)

ath-miR171c-3p 0.56 1.71E�02 1.04 2.02E�05

ath-miR171c-5p 1.71 4.11E�06 2.67 1.12E�07

miR172 ath-miR172e-5p OFF in Aha 1.01E�25 OFF in Aha 5.96E�34

miR319 ath-miR319a 0.78 8.49E�06 0.85 1.42E�08

ath-miR319b 0.97 8.40E�08 1.04 2.54E�11

ath-miR319c �0.70 5.34E�05

miR390 ath-miR390a-5p �1.39 7.16E�12 �1.55 1.20E�25

ath-miR390b-5p �1.39 6.89E�12 �1.55 4.43E�26

miR391 ath-miR391-3p OFF in Aha 1.53E�77 OFF in Aha 1.14E�97

ath-miR391-5p OFF in Aha 1.48E�116 OFF in Aha 9.78E�140

miR393 ath-miR393a-3p �2.66 6.20E�08 �3.03 3.20E�10

ath-miR393a-5p �0.79 3.43E�05 �0.80 1.15E�06

ath-miR393b-5p �0.79 4.42E�05 �0.80 1.69E�06

miR394 ath-miR394a 2.10 1.23E�15 1.55 1.68E�08

ath-miR394b-5p 2.12 5.47E�16 1.57 7.71E�09

miR395 ath-miR395b OFF in Ath-C 9.46E�22 4.18 1.34E�10

ath-miR395c OFF in Ath-C 7.83E�22 4.18 2.94E�10

ath-miR395f OFF in Ath-C 6.62E�22 4.18 1.45E�10

miR398 ath-miR398a-3p �3.30 2.07E�103 �3.21 0.00E+00

ath-miR398a-5p 0.62 4.17E�02

ath-miR398b-3p �3.31 2.63E�104 �3.21 0.00E+00

ath-miR398c-3p �3.31 3.77E�103 �3.21 0.00E+00

miR399 ath-miR399b 2.71 3.64E�39 2.05 9.14E�32

ath-miR399c-3p 2.66 3.07E�38 2.06 1.86E�31

miR400 ath-miR400 �1.83 1.87E�03 �1.64 1.21E�02

miR403 ath-miR403-3p �0.60 1.58E�04 �0.31 1.89E�02

miR408 ath-miR408-5p �1.44 1.21E�17 �1.56 9.69E�63

ath-miR408-5p �0.43 4.83E�02 �0.57 3.99E�02

miR472 ath-miR472-5p 3.15 1.31E�47 2.89 1.14E�33

miR822 ath-miR822-5p �0.66 4.03E�02

miR824 ath-miR824-3p �0.34 3.74E�02 �0.35 3.10E�03

miR825 ath-miR825 �2.31 1.48E�05 �2.05 4.22E�04

miR827 ath-miR827 �0.45 2.85E�02 �1.39 1.62E�13 0.94 5.08E�05

miR846 ath-miR846-3p �0.98 4.55E�07 �1.01 3.72E�06

miR848 ath-miR848 3.48 1.30E�27 4.96 2.47E�37

miR850 ath-miR850 0.59 4.03E�02

Abbreviation: FC, fold-change.
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regulator. On the other hand, the transcript for laccase LAC13 is only

moderately up-regulated in A. halleri in comparison to A. thaliana, as

against a significantly low expression of miR408. Finally, the superox-

ide dismutases CSD1 and CSD2, as well as CCS1, are significantly

up-regulated in A. halleri than in A. thaliana, in accordance to the

expression levels of miR398; in response to Zn in A. thaliana, targets

are either moderately up- (CSD2 and CCS1) or down-regulated (CSD2)

in view of no significant modulation of miR398 (Figure 4).

4 | DISCUSSION

miRNA involvement in the metal homeostasis of plants has been

extensively documented (Ding et al. 2020; Noman & Aqeel 2017).

However, scarce notice has been given to miRNAs in Zn homeo-

stasis, except for some works considering Zn deficiency

(Li et al. 2013; Shi et al. 2013). Due to its dual condition as an

essential micronutrient and a toxic trace element when in excess

(Andreini et al. 2009; DalCorso 2012), Zn uptake and distribution

must be kept under strict control. This makes the analysis of plant

response to Zn very interesting, although challenging: indeed,

plant behavior toward this metal is extremely variable and associ-

ated with the adaptation to a wide range of different edaphic con-

ditions. In particular, hyperaccumulator species show hypertolerance as

well as tightly regulated uptake, translocation and compartmentali-

zation of metals. Yet, despite the precise control of ionic balances

displayed, no data are available on miRNAs in hyperaccumulators.

In light of the evidence, this study has focused on miRNA
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F IGURE 3 Validation of differentially modulated miRNAs. (A) Comparison of northern blot and real-time RT-PCR methods on miR159 and
miR398. (B) Validation of miR157 and miR319 expression by northern blot. (C) Validation of miR390, miR395 and miR408 expression by real-time
RT-PCR. Statistically significant variations (P < 0.05) in northern blot and real-time RT-PCR analyses, evaluated by one-way ANOVA followed by a
post hoc Tukey's test, are marked with letters, the same letter corresponding to nonstatistically significant differences
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involvement in Zn homeostasis by considering the effect of Zn

excess on the nontolerant and nonaccumulator species A. thaliana,

as well as strategies that are constitutively activated or repressed

in the hyperaccumulator species A. halleri. Indeed, A. halleri has

been reported to undergo constitutive Zn deficiency responses

even under Zn-sufficient conditions due to the extremely efficient

metal translocation and compartmentalization (Hanikenne

et al. 2008).

Under the tested conditions that were chosen in order not to

induce excessive stress in nonaccumulator A. thaliana, Zn-treated

plants did not show apparent toxicity symptoms, apart from an

increase in O2
� accumulation and in global SOD activity. Zn accumu-

lation in leaves was slightly, but not significantly, higher, consistently

with the characterization of A. thaliana as an excluder species

(Arrivault et al. 2006). On the other hand, Zn accumulation in

untreated A. halleri was significantly higher than in A. thaliana,

although lower than what was observed in previous studies in native

metallicolous soil and upon hydroponic conditions (Corso et al. 2021;

Schvartzman et al. 2018). However, in this study, plants were grown

in unpolluted soil, having low Zn content and bioavailability. This con-

sidered, it is possible that A. halleri was under moderate Zn deficiency,

but the condition was not so substantial as to produce an appreciable

phenotype of Zn deprivation, as evidenced by the physiological

characterization.

The most striking result emerging from miRNA-Seq analysis is

that a consistent number of miRNAs is differentially expressed when

comparing the two species considered, whereas a significantly

smaller subset is modulated upon Zn treatment in A. thaliana. Analo-

gously, Zn deficiency in S. bicolor produced only a small set of modu-

lated miRNAs in leaves, despite a significant reduction in plant

growth (Li et al. 2013). Moreover, it must be remembered that the

Zn treatment applied in this study produced a condition of moder-

ately Zn-rich soil in order to not induce excessive stress in

A. thaliana. Interestingly, miRNAs that are modulated by Zn treat-

ment in A. thaliana are also differentially expressed when comparing

A. thaliana with hyperaccumulator A. halleri, supporting the hypothe-

sis of a constitutive activation/repression of specific processes in

the latter. With this in mind, the stress response is significantly

enriched in the targets of Zn-regulated miRNAs. For example,

miR163 and miR827, both up-regulated under Zn treatment in

A. thaliana and underexpressed in A. halleri, have been reported as

involved in macronutrient imbalance (Kant et al. 2011; Lundmark

et al. 2010) and biotic stress (Chow & Ng 2017; Yaeno & Iba 2008).

Very low levels of miR163 expression had been previously found

also in Arabidopsis arenosa (Ng et al. 2011), a pseudo-metallophyte

evolved independently from A. halleri, coherently with the hypothe-

sis of partially convergent adaptive processes in the behavior toward

metals (Preite et al. 2019). Interestingly, some other miRNAs

involved in defense against biotic stresses were found as constitu-

tively expressed at different levels in A. halleri in comparison to

A. thaliana (e.g., miR400, miR472, miR825, and miR846). This evi-

dence is coherent with the evolution of different defense mecha-

nisms in A. halleri by changes in copy number and expression levels

of biotic stress-related genes (Becher et al. 2004; Suryawanshi

et al. 2016). Indeed, this adaptive strategy is the result of both con-

vergence between response strategies against biotic/abiotic

stresses and metal hyperaccumulation, providing some form of
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F IGURE 4 Expression analysis of miRNA targets, evaluated by
real-time RT-PCR. Statistically significant variations (P < 0.05),
evaluated by one-way ANOVA followed by a post hoc Tukey's test,
are marked with letters, the same letter corresponding to
nonstatistically significant differences
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elemental defense against pathogens (Shahzad et al. 2013; Stolpe

et al. 2017).

In addition to the stress-related miRNAs reported above, a sub-

stantially large group of differentially expressed miRNAs emerge from

the comparison between A. thaliana and A. halleri, likely reflecting the

differences in the developmental plan and nutritional strategies

between the two species. Indeed, among the predicted targets of dif-

ferentially expressed miRNAs, those associated with plant growth are

significantly enriched; among them, genes responsible for the develop-

ment of roots, leaves and floral organs are represented. To explain this,

it must be considered that the two species, despite being phylogeneti-

cally close, vary in terms of life history (A. thaliana is annual, whereas

A. halleri is perennial and stoloniferous) and therefore have different

allocation of vegetative versus reproductive growth (Clauss &

Koch 2006; Honjo & Kudoh 2019). However, plant habitus is likely not

the only factor contributing to miRNA differential expression. In fact,

growth and development are strongly associated with specific strate-

gies for nutrient uptake and distribution and respond to elemental

imbalances in the soil (Bonser & Aarssen 2003; Bonser et al. 2010);

moreover, miRNAs regulating developmental genes constitute a size-

able subset of those modulated under nutrient deficiencies or metal

excess (Chien et al. 2017; Noman & Aqeel 2017). In particular, root

growth and architecture are highly responsive to element availability in

the soil (Forde & Lorenzo 2001); although the analyses conducted in

this study focus on miRNA regulation in leaves, there is ample proof for

the control of root development and functioning through mobile signals

produced by the shoot, such as phytohormones and small RNAs

(Chuck & O'Connor 2010; Puig et al. 2012). Given all the evidence

reported above, the variability in miRNA levels between A. thaliana and

A. halleri mirrors their inherent differences both in developmental plans

and in nutrient requirements and strategies for their acquisition. In par-

ticular, miRNAs directly involved in auxin signaling, such as miR160,

miR167, and miR393 (Mallory et al. 2005; Si-Ammour et al. 2011; Wu

et al. 2006), constitute a notable and consistent subgroup of those dif-

ferentially expressed between the two species. Moreover, also miR319

and miR390 participate in auxin regulation, respectively, by targeting

TCP transcription factors, among which TCP4 that controls YUCCA5 fla-

vin monooxygenase involved in auxin biosynthesis (Challa et al. 2016),

and by inducing the maturation of TAS3 tasiRNA, a trans-acting small

regulatory RNA repressing the expression of ARF3 (Fahlgren

et al. 2006; Montgomery et al. 2008). It should be noticed that these

miRNAs have been implicated in phenotypic plasticity in response to

nutrient deficiency (Liang et al. 2012; Vidal et al. 2010), stress (Iglesias

et al. 2014; He et al. 2018), and other environmental cues. Interestingly,

miR167-5p isoforms, expressed at higher levels in A. thaliana grown in

control conditions in comparison with both A. thaliana upon Zn treat-

ment and A. halleri, were proposed to be down-regulated by Cd in Bras-

sica napus and to target the metal transporter BnNRAMP1b, located in

the plasma membrane and able to transport Zn, Cd, and Mn (Meng

et al. 2017). Although AtNRAMP1 was not identified by bioinformatic

analysis among miR167 targets in A. thaliana in this study, possible

involvement of this regulatory RNA in the control of metal transport

cannot be excluded.

Besides miRNAs associated with plant development, the compari-

son between A. thaliana and A. halleri highlighted the modulation of a

notable range of miRNAs involved in nutrition. Among them, some P-

related miRNAs are differentially expressed in A. halleri, including the

above-cited miR163 and miR827 as well as miR399, a key regulator

of P homeostasis (Pant et al. 2008). Indeed, the association between

Zn and P nutrition has been extensively reported (reviewed in Bouain

et al. 2014). Furthermore, miR395 isoforms, involved in the regulation

of S homeostasis, have been detected only in the pseudo-

metallophyte species, although transcript levels are low. Under S star-

vation, miR395 targets two ATP sulfurylases, ATPS1 and ATPS4, as

well as SULTR2;1, a low-affinity sulfate transporter, allowing a more

efficient redistribution of S to the shoot; in conditions of S sufficiency,

miR395 is not expressed, thus explaining the absence of the transcript

in A. thaliana and the low read numbers in A. halleri (Kawashima

et al. 2011; Liang et al. 2010). On the other hand, miR395 differential

expression in A. halleri may be linked with different nutritional needs

of the pseudo-metallophyte; indeed, sulfur metabolism is integrated in

the complex network controlling the homeostasis of both macronutri-

ents and trace elements (Briat et al. 2015; Na & Salt 2011).

Finally, in line with the different profiles of mineral nutrition that

distinguish the two species under analysis, Cu-responsive miR398 and

miR408 are significantly down-regulated in A. halleri when compared

with A. thaliana. These two miRNAs are involved in the redistribution

of Cu resources and the maintaining of Cu homeostasis under Cu defi-

ciency by targeting nonessential Cu-binding proteins (reviewed by

Pilon 2017). In particular, miR398-3p targets the Cu/Zn superoxide

dismutases CSD1 and CSD2, with cytoplasmic and plastidial localiza-

tion, respectively (Sunkar et al. 2006), as well as the associated Cu

chaperone CCS1 (Beauclair et al. 2010). In this view, miR398 links

mineral homeostasis with the control of oxidative stress. Indeed, the

lower expression of miR398-3p in A. halleri is consistent with the con-

stitutively higher expression of the targets CSD1, CSD2 and CCS1

observed in this study and the lower accumulation of reactive oxygen

species already described in the pseudo-metallophyte (Baliardini

et al. 2015; Chiang et al. 2006). On the other hand, miR398-3p

isoforms were not modulated upon Zn treatment in A. thaliana. This is

apparently in contrasts with the higher O2
� accumulation and SOD

levels observed in Zn-treated A. thaliana in this study and with

miR398 down-regulation upon oxidative stress and excess of redox-

active metals (Sunkar et al. 2006). However, Zn is not a directly

redox-active metal (Cuypers et al. 1999), and it has been proposed to

alter redox homeostasis indirectly, with no significant effect on

expression levels of miR398b and c (Remans et al. 2012). As for their

targets, CSD1 expression was down-regulated in the same conditions,

whereas CSD2 and CCS1 were moderately but significantly induced,

and global SOD levels are almost double in Zn-treated plants than in

control conditions. Cu/Zn SOD modulation was contrary to what was

observed by Remans et al. (2012); however, it should be considered

that the treatment imposed in this study is different in both the

growth substrate and the duration, thus resulting in a milder stress.

Interestingly, by the miRNA-Seq analysis, only miR398a-5p was up-

regulated upon Zn treatment in A. thaliana. This isoform belongs to
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the poorly characterized passenger strands; the targets predicted in

this study do not allow a clear definition of its possible role in the

plant, although the drought-inducible transcription factor ERF053 has

been proposed as a putative target (Zhu et al. 2020). Overall, Zn treat-

ment upon sub-toxic conditions determines a moderate alteration of

redox status in A. thaliana, that correlates with the modulation

of SOD genes but not with that of miR398. On the other hand, the

expression of the whole regulatory hub associated with miR398 is

markedly different in A. halleri, leading to constitutively activated

strategies for defense against oxidative stress as a part of the adaptive

background of metal hypertolerance.

In conclusion, in A. thaliana, high Zn in soil induces the modulation

of a small set of miRNAs involved in stress response, nutrition and

plant development that are constitutively down-regulated in the facul-

tative metallophyte A. halleri. In addition to these, several other

miRNAs have substantially different transcript levels in A. halleri than

A. thaliana, coherently with native differences in development and

nutrient homeostasis, as well as with constitutively activated strate-

gies for stress response, in particular for oxidative stress. Overall,

these results support the hypothesis that adaptation to metalliferous

soils implicates the reorganization of plant growth, allocation of

resources and global mineral nutrition.
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